Benjamin McKinley

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6705158/publications.pdf

Version: 2024-02-01

75 papers

4,319 citations

30 h-index 65 g-index

76 all docs 76 docs citations

76 times ranked 2921 citing authors

#	Article	IF	CITATIONS
1	Searching for the synchrotron cosmic web again: A replication attempt. Publications of the Astronomical Society of Australia, 2022, 39, .	3.4	4
2	Multi-scale feedback and feeding in the closest radio galaxy Centaurus A. Nature Astronomy, 2022, 6, 109-120.	10.1	16
3	System design and calibration of SITARA—a global 21 cm short spacing interferometer prototype. Publications of the Astronomical Society of Australia, 2022, 39, .	3.4	5
4	FIGARO simulation: Filaments & Endio Simulation and Society of Australia, 2021, 38, .	3.4	6
5	Ultra-steep-spectrum Radio "Jellyfish―Uncovered in A2877. Astrophysical Journal, 2021, 909, 198.	4.5	16
6	A new MWA limit on the 21Âcm power spectrum at redshifts â^¼13–17. Monthly Notices of the Royal Astronomical Society, 2021, 505, 4775-4790.	4.4	25
7	Constraining the 21 cm brightness temperature of the IGM at <i>z</i> = 6.6 around LAEs with the murchison widefield array. Monthly Notices of the Royal Astronomical Society, 2021, 507, 772-780.	4.4	3
8	Epoch of reionization power spectrum limits from Murchison Widefield Array data targeted at EoR1 field. Monthly Notices of the Royal Astronomical Society, 2021, 508, 5954-5971.	4.4	14
9	The Aperture Array Verification System 1: System overview and early commissioning results. Astronomy and Astrophysics, 2021, 655, A5.	5.1	16
10	The MWA long baseline Epoch of reionisation survey—l. Improved source catalogue for the EoR 0 field. Publications of the Astronomical Society of Australia, 2021, 38, .	3.4	5
11	The All-Sky SignAl Short-Spacing INterferometer (ASSASSIN) – I. Global-sky measurements with the Engineering Development Array-2. Monthly Notices of the Royal Astronomical Society, 2020, 499, 52-67.	4.4	12
12	Low(er) frequency follow-up of 28 candidate, large-scale synchrotron sources. Publications of the Astronomical Society of Australia, 2020, 37, .	3.4	8
13	The impact of tandem redundant/sky-based calibration in MWA Phase II data analysis. Publications of the Astronomical Society of Australia, 2020, 37, .	3.4	8
14	Modelling and peeling extended sources with shapelets: A Fornax A case study. Publications of the Astronomical Society of Australia, 2020, 37, .	3.4	11
15	Deep multiredshift limits on Epoch of Reionization 21Âcm power spectra from four seasons of Murchison Widefield Array observations. Monthly Notices of the Royal Astronomical Society, 2020, 493, 4711-4727.	4.4	129
16	EMBERS: Experimental Measurement of BEam Responses with Satellites. Journal of Open Source Software, 2020, 5, 2629.	4.6	2
17	Gridded and direct Epoch of Reionisation bispectrum estimates using the Murchison Widefield Array. Publications of the Astronomical Society of Australia, 2019, 36, .	3.4	19
18	Improving the Epoch of Reionization Power Spectrum Results from Murchison Widefield Array Season 1 Observations. Astrophysical Journal, 2019, 884, 1.	4. 5	92

#	Article	lF	Citations
19	Robust statistics towards detection of the 21Âcm signal from the Epoch of Reionization. Monthly Notices of the Royal Astronomical Society, 2019, 486, 5766-5784.	4.4	4
20	<i>Murchison</i> Widefield Array and <i>XMM-Newton</i> observations of the Galactic supernova remnant G5.9+3.1. Astronomy and Astrophysics, 2019, 625, A93.	5.1	1
21	GaLactic and Extragalactic All-sky Murchison Widefield Array (GLEAM) survey II: Galactic plane 345° << > < 67Ű, 180° << > < 240°. Publications of the Astronomical Society of Australia, 2019, 36, .	3.4	30
22	First Season MWA Phase II Epoch of Reionization Power Spectrum Results at Redshift 7. Astrophysical Journal, 2019, 887, 141.	4.5	69
23	A Serendipitous MWA Search for Narrowband Signals from †Oumuamua. Astrophysical Journal, 2018, 857, 11.	4.5	19
24	The Phase II Murchison Widefield Array: Design overview. Publications of the Astronomical Society of Australia, 2018, 35, .	3.4	140
25	Assessment of Ionospheric Activity Tolerances for Epoch of Reionization Science with the Murchison Widefield Array. Astrophysical Journal, 2018, 867, 15.	4.5	17
26	$\mbox{\ensurement}$ of MWA primary beam variation using $\mbox{\ensurement}$ ORBCOMM $\mbox{\ensurement}$. Publications of the Astronomical Society of Australia, 2018, 35, .	3.4	24
27	Comparing Redundant and Sky-model-based Interferometric Calibration: A First Look with Phase II of the MWA. Astrophysical Journal, 2018, 863, 170.	4.5	41
28	Galactic synchrotron distribution derived from 152 H ii region absorption features in the full GLEAM survey. Monthly Notices of the Royal Astronomical Society, 2018, 479, 4041-4055.	4.4	13
29	Measuring the global 21-cm signal with the MWA-I: improved measurements of the Galactic synchrotron background using lunar occultation. Monthly Notices of the Royal Astronomical Society, 2018, 481, 5034-5045.	4.4	20
30	A multifrequency radio continuum study of the Magellanic Clouds $\hat{a} \in \mathbb{C}$ I. Overall structure and star formation rates. Monthly Notices of the Royal Astronomical Society, 2018, 480, 2743-2756.	4.4	21
31	The spectral energy distribution of powerful starburst galaxies \hat{a} \in 1. Modelling the radio continuum. Monthly Notices of the Royal Astronomical Society, 2018, 474, 779-799.	4.4	32
32	The jet/wind outflow in Centaurus A: a local laboratory for AGN feedback. Monthly Notices of the Royal Astronomical Society, 2018, 474, 4056-4072.	4.4	20
33	Spectral Energy Distribution and Radio Halo of NGC 253 at Low Radio Frequencies. Astrophysical Journal, 2017, 838, 68.	4.5	23
34	Extragalactic Peaked-spectrum Radio Sources at Low Frequencies. Astrophysical Journal, 2017, 836, 174.	4.5	112
35	A High-Resolution Foreground Model for the MWA EoR1 Field: Model and Implications for EoR Power Spectrum Analysis. Publications of the Astronomical Society of Australia, 2017, 34, .	3.4	25
36	A search for long-time-scale, low-frequency radio transients. Monthly Notices of the Royal Astronomical Society, 2017, 466, 1944-1953.	4.4	30

#	Article	IF	CITATIONS
37	Low-Frequency Spectral Energy Distributions of Radio Pulsars Detected with the Murchison Widefield Array. Publications of the Astronomical Society of Australia, 2017, 34, .	3.4	25
38	Calibration and Stokes Imaging with Full Embedded Element Primary Beam Model for the Murchison Widefield Array. Publications of the Astronomical Society of Australia, 2017, 34, .	3.4	51
39	Giant lobes of Centaurus A as seen in radio and gamma-ray images obtained with the Fermi-LAT and Planck satellites. AIP Conference Proceedings, 2017, , .	0.4	O
40	Galactic synchrotron emissivity measurements between $250 \hat{A}^{\circ}$ < $\langle i \rangle \langle i \rangle $ < $355 \hat{A}^{\circ}$ from the GLEAM survey with the MWA. Monthly Notices of the Royal Astronomical Society, 2017, 465, 3163-3174.	4.4	12
41	High-energy sources at low radio frequency: the Murchison Widefield Array view of <i>Fermi</i> blazars. Astronomy and Astrophysics, 2016, 588, A141.	5.1	31
42	LOW-FREQUENCY OBSERVATIONS OF LINEARLY POLARIZED STRUCTURES IN THE INTERSTELLAR MEDIUM NEAR THE SOUTH GALACTIC POLE. Astrophysical Journal, 2016, 830, 38.	4.5	58
43	DELAY SPECTRUM WITH PHASE-TRACKING ARRAYS: EXTRACTING THE H I POWER SPECTRUM FROM THE EPOCH OF REIONIZATION. Astrophysical Journal, 2016, 833, 213.	4.5	15
44	Giant lobes of Centaurus A as seen in radio and $\langle i \rangle \hat{I}^3 \langle i \rangle$ -ray images obtained with the $\langle i \rangle$ -Fermi $\langle i \rangle$ -LAT and $\langle i \rangle$ -Planck $\langle i \rangle$ -satellites. Astronomy and Astrophysics, 2016, 595, A29.	5.1	20
45	The radio spectral energy distribution of infrared-faint radio sources. Astronomy and Astrophysics, 2016, 593, A130.	5.1	8
46	A Large-Scale, Low-Frequency Murchison Widefield Array Survey of Galactic H <scp>ii</scp> Regions between 260 < <i>I; 340. Publications of the Astronomical Society of Australia, 2016, 33, .</i>	3.4	16
47	lonospheric Modelling using GPS to Calibrate the MWA. II: Regional Ionospheric Modelling using GPS and GLONASS to Estimate lonospheric Gradients. Publications of the Astronomical Society of Australia, 2016, 33, .	3.4	8
48	FIRST SEASON MWA EOR POWER SPECTRUM RESULTS AT REDSHIFT 7. Astrophysical Journal, 2016, 833, 102.	4.5	147
49	THE IMPORTANCE OF WIDE-FIELD FOREGROUND REMOVAL FOR 21 cm COSMOLOGY: A DEMONSTRATION WITH EARLY MWA EPOCH OF REIONIZATION OBSERVATIONS. Astrophysical Journal, 2016, 819, 8.	4.5	65
50	A high reliability survey of discrete Epoch of Reionization foreground sources in the MWA EoRO field. Monthly Notices of the Royal Astronomical Society, 2016, 461, 4151-4175.	4.4	27
51	THE MURCHISON WIDEFIELD ARRAY 21 cm POWER SPECTRUM ANALYSIS METHODOLOGY. Astrophysical Journal, 2016, 825, 114.	4.5	67
52	Low radio frequency observations and spectral modelling of the remnant of Supernova 1987A. Monthly Notices of the Royal Astronomical Society, 2016, 462, 290-297.	4.4	15
53	First limits on the 21Âcm power spectrum during the Epoch of X-ray heating. Monthly Notices of the Royal Astronomical Society, 2016, 460, 4320-4347.	4.4	79
54	Parametrizing Epoch of Reionization foregrounds: a deep survey of low-frequency point-source spectra with the Murchison Widefield Array. Monthly Notices of the Royal Astronomical Society, 2016, 458, 1057-1070.	4.4	68

#	Article	IF	CITATIONS
55	CHIPS: THE COSMOLOGICAL H i POWER SPECTRUM ESTIMATOR. Astrophysical Journal, 2016, 818, 139.	4.5	98
56	GLEAM: The GaLactic and Extragalactic All-Sky MWA Survey. Publications of the Astronomical Society of Australia, 2015, 32, .	3.4	221
57	lonospheric Modelling using GPS to Calibrate the MWA. I: Comparison of First Order Ionospheric Effects between GPS Models and MWA Observations. Publications of the Astronomical Society of Australia, 2015, 32, .	3.4	13
58	Empirical covariance modeling for 21Âcm power spectrum estimation: A method demonstration and new limits from early Murchison Widefield Array 128-tile data. Physical Review D, 2015, 91, .	4.7	99
59	BROADBAND SPECTRAL MODELING OF THE EXTREME GIGAHERTZ-PEAKED SPECTRUM RADIO SOURCE PKS B0008-421. Astrophysical Journal, 2015, 809, 168.	4.5	65
60	An analysis of the halo and relic radio emission from Abell 3376 from Murchison Widefield Array observations. Monthly Notices of the Royal Astronomical Society, 2015, 451, 4207-4214.	4.4	12
61	THE SPECTRAL VARIABILITY OF THE GHZ-PEAKED SPECTRUM RADIO SOURCE PKS 1718-649 AND A COMPARISON OF ABSORPTION MODELS. Astronomical Journal, 2015, 149, 74.	4.7	36
62	CONFIRMATION OF WIDE-FIELD SIGNATURES IN REDSHIFTED 21 cm POWER SPECTRA. Astrophysical Journal Letters, 2015, 807, L28.	8.3	73
63	The Murchison Widefield Array Correlator. Publications of the Astronomical Society of Australia, 2015, 32, .	3.4	39
64	The Low-Frequency Environment of the Murchison Widefield Array: Radio-Frequency Interference Analysis and Mitigation. Publications of the Astronomical Society of Australia, 2015, 32, .	3.4	107
65	FOREGROUNDS IN WIDE-FIELD REDSHIFTED 21 cm POWER SPECTRA. Astrophysical Journal, 2015, 804, 14.	4.5	122
66	Modelling of the spectral energy distribution of Fornax A: leptonic and hadronic production of high-energy emission from the radio lobes. Monthly Notices of the Royal Astronomical Society, 2015, 446, 3478-3491.	4.4	41
67	The First Murchison Widefield Array low-frequency radio observations of cluster scale non-thermal emission: the case of Abell 3667. Monthly Notices of the Royal Astronomical Society, 2014, 445, 330-346.	4.4	39
68	wsclean: an implementation of a fast, generic wide-field imager for radio astronomy. Monthly Notices of the Royal Astronomical Society, 2014, 444, 606-619.	4.4	562
69	First look Murchison Widefield Array observations of Abell 3667. , 2014, , .		0
70	The Murchison Widefield Array Commissioning Survey: A Low-Frequency Catalogue of 14 110 Compact Radio Sources over 6 100 Square Degrees. Publications of the Astronomical Society of Australia, 2014, 31, .	3 . 4	62
71	The Murchison Widefield Array: The Square Kilometre Array Precursor at Low Radio Frequencies. Publications of the Astronomical Society of Australia, 2013, 30, .	3.4	892
72	The giant lobes of Centaurus A observed at 118 MHz with the Murchison Widefield Array. Monthly Notices of the Royal Astronomical Society, 2013, 436, 1286-1301.	4.4	19

#	Article	IF	CITATIONS
73	LOW-FREQUENCY OBSERVATIONS OF THE MOON WITH THE MURCHISON WIDEFIELD ARRAY. Astronomical Journal, 2013, 145, 23.	4.7	31
74	ON THE DETECTION AND TRACKING OF SPACE DEBRIS USING THE MURCHISON WIDEFIELD ARRAY. I. SIMULATIONS AND TEST OBSERVATIONS DEMONSTRATE FEASIBILITY. Astronomical Journal, 2013, 146, 103.	4.7	34
75	A study of halo and relic radio emission in merging clusters using the Murchison Widefield Array. Monthly Notices of the Royal Astronomical Society, 0 , , stx155.	4.4	7