Yang Liu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6705065/publications.pdf

Version: 2024-02-01

162 papers	5,416 citations	40 h-index	98798 67 g-index
162	162	162	1659
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Pinning Stabilization of Stochastic Networks With Finite States via Controlling Minimal Nodes. IEEE Transactions on Cybernetics, 2022, 52, 2361-2369.	9.5	8
2	SensorsDesign for Large-Scale Boolean Networks via Pinning Observability. IEEE Transactions on Automatic Control, 2022, 67, 4162-4169.	5.7	29
3	Cluster Synchronization of Boolean Networks Under Probabilistic Function Perturbation. IEEE Transactions on Circuits and Systems II: Express Briefs, 2022, 69, 504-508.	3.0	8
4	Minimum-Time and Minimum-Triggering Observability of Stochastic Boolean Networks. IEEE Transactions on Automatic Control, 2022, 67, 1558-1565.	5.7	60
5	Pinning Control for Stabilization of Boolean Networks Under Knock-Out Perturbation. IEEE Transactions on Automatic Control, 2022, 67, 1550-1557.	5.7	34
6	State Estimation of Networked Finite State Machine With Communication Delays and Losses. IEEE Transactions on Circuits and Systems II: Express Briefs, 2022, 69, 1372-1376.	3.0	12
7	Generalized cluster synchronization of Boolean control networks with delays in both the states and the inputs. Journal of the Franklin Institute, 2022, 359, 206-223.	3.4	7
8	A Reset Algorithm Solving Coordination With Antagonistic Reciprocity. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2022, 52, 2361-2371.	9.3	18
9	Minimal observability of Boolean networks. Science China Information Sciences, 2022, 65, 1.	4.3	30
10	Minimal observability of Boolean control networks. Systems and Control Letters, 2022, 163, 105204.	2.3	13
11	Fault detection and pinning control of Boolean networks. Applied Mathematics and Computation, 2022, 429, 127232.	2.2	16
12	Penalty Method for Constrained Distributed Quaternion-Variable Optimization. IEEE Transactions on Cybernetics, 2021, 51, 5631-5636.	9.5	34
13	Event-Triggered Control for Output Regulation of Probabilistic Logical Systems With Delays. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2021, 51, 6842-6851.	9.3	4
14	Steady-State Design of Large-Dimensional Boolean Networks. IEEE Transactions on Neural Networks and Learning Systems, 2021, 32, 1149-1161.	11.3	39
15	Velocity Constraint on Double-Integrator Dynamics Subject to Antagonistic Information. IEEE Transactions on Circuits and Systems II: Express Briefs, 2021, 68, 411-415.	3.0	22
16	Categorization Problem on Controllability of Boolean Control Networks. IEEE Transactions on Automatic Control, 2021, 66, 2297-2303.	5.7	51
17	A Necessary and Sufficient Graphic Condition for the Original Disturbance Decoupling of Boolean Networks. IEEE Transactions on Automatic Control, 2021, 66, 3765-3772.	5.7	37
18	Pinning Stabilization of Boolean Control Networks via a Minimum Number of Controllers. IEEE Transactions on Cybernetics, 2021, 51, 373-381.	9.5	34

#	Article	IF	Citations
19	Output controllability and observability of mix-valued logic control networks. Mathematical Modelling and Control, 2021, 1, 145-156.	0.9	6
20	Asymptotical Stability and Stabilization of Continuous-time Probabilistic Logic Networks. IEEE Transactions on Automatic Control, 2021, , 1-1.	5.7	6
21	Induced-Equations-Based Stability Analysis and Stabilization of Markovian Jump Boolean Networks. IEEE Transactions on Automatic Control, 2021, 66, 4820-4827. Non-weighted <mml:math <="" display="inline" td="" xmlns:mml="http://www.w3.org/1998/Math/MathML"><td>5.7</td><td>30</td></mml:math>	5.7	30
22	id="d1e71" altimg="si9.svg"> <mml:msub><mml:mrow><mml:mi></mml:mi></mml:mrow><mml:mrow><mml:mn>2<mml:msub><mml:mrow><mml:mi>L</mml:mi></mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><m< td=""><td>0.0</td><td>10</td></m<></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:msub></mml:mn></mml:mrow></mml:msub>	0.0	10
23	of asynchronously switched systems. Nonlinear Analysis: Hybrid Systems, 2021, 43, 101105. Penalty Methods for Distributed Optimization with Inequality and Equality Constraints., 2021, ,.		O
24	Weak Stabilization of k-Valued Logical Networks. , 2021, , .		0
25	Coordination for Antagonistic Impulsive Network Systems. , 2021, , .		1
26	Robust Stability of Switched Logical Networks with Function Perturbation under Arbitrary Switching Signals. , 2021, , .		0
27	Event-Triggered Sliding Mode Control for Attitude Stabilization of a Rigid Spacecraft. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2020, 50, 3290-3299.	9.3	89
28	The Robustness of Outputs With Respect to Disturbances for Boolean Control Networks. IEEE Transactions on Neural Networks and Learning Systems, 2020, 31, 1046-1051.	11.3	11
29	Constrained Quaternion-Variable Convex Optimization: A Quaternion-Valued Recurrent Neural Network Approach. IEEE Transactions on Neural Networks and Learning Systems, 2020, 31, 1022-1035.	11.3	78
30	The Outputs Robustness of Boolean Control Networks via Pinning Control. IEEE Transactions on Control of Network Systems, 2020, 7, 201-209.	3.7	33
31	Sampled-Data State Feedback Control for the Set Stabilization of Boolean Control Networks. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2020, 50, 1580-1589.	9.3	40
32	Synchronization of drive-response Boolean control networks with impulsive disturbances. Applied Mathematics and Computation, 2020, 364, 124679.	2.2	34
33	Nonlinear second-order multi-agent systems subject to antagonistic interactions without velocity constraints. Applied Mathematics and Computation, 2020, 364, 124667.	2.2	30
34	On pinning reachability of probabilistic Boolean control networks. Science China Information Sciences, 2020, 63, 1.	4.3	18
35	Set Stabilization of Probabilistic Boolean Control Networks: A Sampled-Data Control Approach. IEEE Transactions on Cybernetics, 2020, 50, 3816-3823.	9.5	31
36	Output feedback stabilizer design of Boolean networks based on network structure. Frontiers of Information Technology and Electronic Engineering, 2020, 21, 247-259.	2.6	35

#	Article	IF	CITATIONS
37	Periodic Event-Triggered Adaptive Control for Attitude Stabilization Under Input Saturation. IEEE Transactions on Circuits and Systems I: Regular Papers, 2020, 67, 249-258.	5.4	56
38	Asymptotical Stability of Probabilistic Boolean Networks With State Delays. IEEE Transactions on Automatic Control, 2020, 65, 1779-1784.	5.7	85
39	Sampled-Data State-Feedback Stabilization of Probabilistic Boolean Control Networks: A Control Lyapunov Function Approach. IEEE Transactions on Cybernetics, 2020, 50, 3928-3937.	9.5	37
40	Stabilization of logical control networks: an event-triggered control approach. Science China Information Sciences, 2020, 63, 1.	4.3	45
41	Output Robustness of Probabilistic Boolean Control Networks With Respect to One-Bit Perturbation. IEEE Transactions on Control of Network Systems, 2020, 7, 1769-1777.	3.7	14
42	A Novel Analysis Method for Grain-Like Cascade FSRs. , 2020, , .		1
43	Controllability and Observability of Linear Quaternion-valued Systems. Acta Mathematica Sinica, English Series, 2020, 36, 1299-1314.	0.6	13
44	Controllability and stabilization of Boolean control networks by the auxiliary function of flipping. International Journal of Robust and Nonlinear Control, 2020, 30, 5529-5541.	3.7	14
45	Stability analysis of totally positive switched linear systems with average dwell time switching. Nonlinear Analysis: Hybrid Systems, 2020, 36, 100877.	3.5	28
46	Synchronization of Coupled Time-Delay Neural Networks With Mode-Dependent Average Dwell Time Switching. IEEE Transactions on Neural Networks and Learning Systems, 2020, 31, 5483-5496.	11.3	95
47	Complex systems and networks with their applications. Frontiers of Information Technology and Electronic Engineering, 2020, 21, 195-198.	2.6	1
48	Coordination of General Multiagent Systems With Antagonistic Information and Communication Constraints., 2020,,.		0
49	Hidden-Markov-Model-Based Asynchronous Filter Design of Nonlinear Markov Jump Systems in Continuous-Time Domain. IEEE Transactions on Cybernetics, 2019, 49, 2294-2304.	9.5	94
50	The Local Convergence of Boolean Networks With Disturbances. IEEE Transactions on Circuits and Systems II: Express Briefs, 2019, 66, 667-671.	3.0	7
51	Stabilisation for cascade of nonlinear ODEs and counter-convecting transport dynamics. International Journal of Systems Science, 2019, 50, 2053-2062.	5.5	1
52	Zero-Determinant Strategies in Winner Takes All Game. , 2019, , .		1
53	Output Tracking of Boolean Control Networks Driven by Constant Reference Signal. IEEE Access, 2019, 7, 112572-112577.	4.2	32
54	Sampled-data stabilization of probabilistic Boolean control networks. Systems and Control Letters, 2019, 124, 106-111.	2.3	51

#	Article	IF	CITATIONS
55	On the ensemble controllability of Boolean control networks using STP method. Applied Mathematics and Computation, 2019, 358, 51-62.	2.2	64
56	Output Regulation of Boolean Control Networks With Nonuniform Sampled-Data Control. IEEE Access, 2019, 7, 50691-50696.	4.2	6
57	Stabilization and Finite-Time Stabilization of Probabilistic Boolean Control Networks. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2019, , 1-8.	9.3	39
58	Event-triggered control for the synchronization of Boolean control networks. Nonlinear Dynamics, 2019, 96, 1335-1344.	5.2	29
59	Robust Invariant Set Analysis of Boolean Networks. Complexity, 2019, 2019, 1-8.	1.6	18
60	Observability of Boolean networks via STP and graph methods. IET Control Theory and Applications, 2019, 13, 1031-1037.	2.1	21
61	Controllability and Observability of Boolean Control Networks via Sampled-Data Control. IEEE Transactions on Control of Network Systems, 2019, 6, 1291-1301.	3.7	13
62	Fast-Time Stability of Temporal Boolean Networks. IEEE Transactions on Neural Networks and Learning Systems, 2019, 30, 2285-2294.	11.3	16
63	Output tracking of probabilistic Boolean networks by output feedback control. Information Sciences, 2019, 483, 96-105.	6.9	36
64	Sampled-Data Control for the Synchronization of Boolean Control Networks. IEEE Transactions on Cybernetics, 2019, 49, 726-732.	9.5	68
65	Further Results on the Controllability of Boolean Control Networks. IEEE Transactions on Automatic Control, 2019, 64, 440-442.	5.7	78
66	On the Optimal Control of Boolean Control Networks. SIAM Journal on Control and Optimization, 2018, 56, 1321-1341.	2.1	73
67	Static output feedback set stabilization for context-sensitive probabilistic Boolean control networks. Applied Mathematics and Computation, 2018, 332, 263-275.	2.2	38
68	Pinning Consensus Analysis for Nonlinear Secondâ€Order Multiâ€Agent Systems with Timeâ€Varying Delays. Asian Journal of Control, 2018, 20, 2343-2350.	3.0	20
69	Nonsingularity of Grain-like cascade FSRs via semi-tensor product. Science China Information Sciences, 2018, 61, 1.	4.3	85
70	Event-Triggered Control for the Disturbance Decoupling Problem of Boolean Control Networks. IEEE Transactions on Cybernetics, 2018, 48, 2764-2769.	9.5	80
71	Robust Control Invariance of Probabilistic Boolean Control Networks via Event-Triggered Control. IEEE Access, 2018, 6, 37767-37774.	4.2	45
72	The equivalence issue of two kinds of controllers in Boolean control networks. Applied Mathematics and Computation, 2018, 321, 633-640.	2.2	31

#	Article	IF	Citations
73	A boundary Schwarz lemma for holomorphic mappings on the polydisc. Chinese Annals of Mathematics Series B, 2018, 39, 9-16.	0.4	5
74	Stability Analysis of Quaternion-Valued Neural Networks: Decomposition and Direct Approaches. IEEE Transactions on Neural Networks and Learning Systems, 2018, 29, 4201-4211.	11.3	140
75	Variable structure controller design for Boolean networks. Neural Networks, 2018, 97, 107-115.	5.9	12
76	Strategy optimization for static games based on STP method. Applied Mathematics and Computation, 2018, 316, 390-399.	2.2	37
77	Observability of Boolean control networks. Science China Information Sciences, 2018, 61, 1.	4.3	67
78	A Schwarz Lemma at the Boundary of Hilbert Balls. Chinese Annals of Mathematics Series B, 2018, 39, 695-704.	0.4	2
79	Observability of SBCNs under arbitrary switching signals. , 2018, , .		0
80	Stabilization of Boolean Control Networks Under Aperiodic Sampled-Data Control. SIAM Journal on Control and Optimization, 2018, 56, 4385-4404.	2.1	135
81	Event-Triggered Control for the Stabilization of Probabilistic Boolean Control Networks. Complexity, 2018, 2018, 1-7.	1.6	38
82	One-Layer Neural Network for Nonlinear Convex Programming with Linear Constraints. , 2018, , .		3
83	Boundary Schwarz lemma for nonequidimensional holomorphic mappings and its application. Pacific Journal of Mathematics, 2018, 295, 463-476.	0.5	4
84	A new class of fixed-time bipartite consensus protocols for multi-agent systems with antagonistic interactions. Journal of the Franklin Institute, 2018, 355, 5256-5271.	3.4	36
85	Stabilization of dynamic-algebraic Boolean control networks via state feedback control. Journal of the Franklin Institute, 2018, 355, 5520-5533.	3.4	12
86	Set Stability and Stabilization of Switched Boolean Networks With State-Based Switching. IEEE Access, 2018, 6, 35624-35630.	4.2	88
87	The transformation between the Galois NLFSRs and the Fibonacci NLFSRs via semi-tensor product of matrices. Automatica, 2018, 96, 393-397.	5.0	71
88	Stabilization of evolutionary networked games with length-r information. Applied Mathematics and Computation, 2018, 337, 442-451.	2.2	27
89	Stability and <i>L</i> ₂ â€gain analysis for switched singular linear systems with jumps. Mathematical Methods in the Applied Sciences, 2017, 40, 589-599.	2.3	26
90	Finiteâ€time boundedness and <i>L</i> ₂ â€gain analysis for switched positive linear systems with multiple time delays. International Journal of Robust and Nonlinear Control, 2017, 27, 3508-3523.	3.7	14

#	Article	IF	Citations
91	Robust sampled-data control invariance for Boolean control networks. Journal of the Franklin Institute, 2017, 354, 7077-7087.	3.4	19
92	Function perturbations on singular Boolean networks. Automatica, 2017, 84, 36-42.	5.0	107
93	Decomposition approach to the stability of recurrent neural networks with asynchronous time delays in quaternion field. Neural Networks, 2017, 94, 55-66.	5.9	45
94	Pinning Control for the Disturbance Decoupling Problem of Boolean Networks. IEEE Transactions on Automatic Control, 2017, 62, 6595-6601.	5 . 7	134
95	On algorithms for state feedback stabilization of Boolean control networks. Automatica, 2017, 84, 10-16.	5.0	55
96	Normalization and Solvability of Dynamic-Algebraic Boolean Networks. IEEE Transactions on Neural Networks and Learning Systems, 2017, 29, 1-6.	11.3	9
97	Delayed Feedback Control for Stabilization of Boolean Control Networks With State Delay. IEEE Transactions on Neural Networks and Learning Systems, 2017, 29, 1-6.	11.3	36
98	A novel consensus algorithm for secondâ€order multiâ€ogent systems without velocity measurements. International Journal of Robust and Nonlinear Control, 2017, 27, 2510-2528.	3.7	36
99	Predictor-based stabilisation for discrete nonlinear systems with state-dependent input delays. International Journal of Systems Science, 2017, 48, 769-777.	5 . 5	7
100	Global exponential stability for quaternion-valued recurrent neural networks with time-varying delays. Nonlinear Dynamics, 2017, 87, 553-565.	5.2	138
101	Sampled-data control for spacecraft attitude control systems based on a quaternion model., 2017,,.		1
102	Controllability of dynamicâ€algebraic Boolean networks based on a new normalisation approach. IET Control Theory and Applications, 2017, 11, 2104-2109.	2.1	4
103	Strong controllability of mix-valued logical control networks. , 2017, , .		0
104	Robust sampled-data control invariance for Boolean control networks., 2017,,.		0
105	Survey on semiâ€tensor product method with its applications in logical networks and other finiteâ€valued systems. IET Control Theory and Applications, 2017, 11, 2040-2047.	2.1	191
106	Control evolutionary networked games with different length information. , 2017, , .		0
107	Global $\hat{l}\frac{1}{4}$ -stability criteria for quaternion-valued neural networks with unbounded time-varying delays. Information Sciences, 2016, 360, 273-288.	6.9	164
108	Sampled-data stabilization of mix-valued logical control networks. , 2016, , .		0

#	Article	IF	Citations
109	Robust finite-time boundedness of multi-agent systems subject to parametric uncertainties andÂdisturbances. International Journal of Systems Science, 2016, 47, 2466-2474.	5 . 5	9
110	Global stability of Clifford-valued recurrent neural networks with time delays. Nonlinear Dynamics, 2016, 84, 767-777.	5.2	113
111	Feedback Controller Design for the Synchronization of Boolean Control Networks. IEEE Transactions on Neural Networks and Learning Systems, 2016, 27, 1991-1996.	11.3	118
112	Sampled-Data State Feedback Stabilization of Boolean Control Networks. Neural Computation, 2016, 28, 778-799.	2.2	69
113	Disturbance Decoupling of Singular Boolean Control Networks. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2016, 13, 1194-1200.	3.0	31
114	Partial stability and stabilisation of Boolean networks. International Journal of Systems Science, 2016, 47, 2119-2127.	5.5	14
115	Ensemble control of linear systems with parameter uncertainties. International Journal of Control, 2016, 89, 1495-1508.	1.9	4
116	Boundary Schwarz lemma for pluriharmonic mappings between unit balls. Journal of Mathematical Analysis and Applications, 2016, 433, 487-495.	1.0	15
117	Observer-based distributed consensus for general nonlinear multi-agent systems with interval control inputs. International Journal of Control, 2016, 89, 84-98.	1.9	12
118	Observer based consensus for nonlinear multi-agent systems with communication failures. Neurocomputing, 2016, 173, 1034-1043.	5.9	9
119	Stability criteria of nonlinear impulsive differential equations with infinite delays. Acta Mathematicae Applicatae Sinica, 2015, 31, 921-934.	0.7	0
120	Synchronisation analysis of Boolean networks based on equivalence. IET Control Theory and Applications, 2015, 9, 2242-2248.	2.1	8
121	Admissibility and static outputâ€feedback stabilization of singular Markovian jump systems with defective statistics of modes transitions. International Journal of Robust and Nonlinear Control, 2015, 25, 588-609.	3.7	9
122	Finite time stability of nonlinear impulsive systems and its applications in sampled-data systems. ISA Transactions, 2015, 57, 172-178.	5.7	41
123	Controllability of probabilistic Boolean control networks based on transition probability matrices. Automatica, 2015, 52, 340-345.	5.0	192
124	A Mayer-type optimal control for multivalued logic control networks with undesirable states. Applied Mathematical Modelling, 2015, 39, 3357-3365.	4.2	12
125	A Halanay-type inequality approach to the stability analysis of discrete-time neural networks with delays. Applied Mathematics and Computation, 2015, 265, 696-707.	2.2	59
126	Stability and <i>L</i> ₂ â€gain performance for nonâ€linear switched impulsive systems. IET Control Theory and Applications, 2015, 9, 300-307.	2.1	12

#	ARTICLE in Schwarz lemma for the modulus of holomorphic mappings on <mml:math <="" altimg="sil.gif" overriow="scroil" th="" xmins:xocs="http://www.eisevier.com/xmi/xocs/dtd"><th>IF</th><th>Citations</th></mml:math>	IF	Citations
127	xmlns:xs="http://www.w3.org/2001/XMLSchema" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://www.elsevier.com/xml/ja/dtd" xmlns:xsi="http://www.elsevier.com/xml/ja/dtd" xmlns:mml="http://www.w3.org/1998/Math/MathML"	1.0	2
128	Control design for a class of nonlinear parameter varying systems. International Journal of Systems Science, 2015, 46, 1638-1647.	5.5	7
129	Asymptotic tracking control for a class of reference signals for linear differential inclusions. International Journal of Systems Science, 2014, 45, 1635-1642.	5.5	3
130	Synchronization in an Array of Output-Coupled Boolean Networks With Time Delay. IEEE Transactions on Neural Networks and Learning Systems, 2014, 25, 2288-2294.	11.3	179
131	Some necessary and sufficient conditions for the output controllability of temporal Boolean control networks. ESAIM - Control, Optimisation and Calculus of Variations, 2014, 20, 158-173.	1.3	75
132	A variant of HörmanderʽsL2existence theorem for the Dirac operator in Clifford analysis. Journal of Mathematical Analysis and Applications, 2014, 410, 39-54.	1.0	3
133	Controllability of Boolean control networks with impulsive effects and forbidden states. Mathematical Methods in the Applied Sciences, 2014, 37, 1-9.	2.3	88
134	Data-based controllability analysis of discrete-time linear time-delay systems. International Journal of Systems Science, 2014, 45, 2411-2417.	5.5	10
135	Controllability of Boolean control networks with time delays both in states and inputs. Neurocomputing, 2014, 129, 467-475.	5.9	33
136	Distributed consensus for sampled-data control multi-agent systems with missing control inputs. Applied Mathematics and Computation, 2014, 240, 348-357.	2.2	24
137	The Generalized Schwarz–Pick Estimates of Arbitrary Order on the Unit Polydisk. Complex Analysis and Operator Theory, 2013, 7, 519-528.	0.6	3
138	A new impulsive synchronization criterion for T–S fuzzy model and its applications. Applied Mathematical Modelling, 2013, 37, 8826-8835.	4.2	26
139	A Note on the Controllability and Observability for Piecewise Linear Timeâ€varying Impulsive Systems. Asian Journal of Control, 2013, 15, 1867-1870.	3.0	10
140	SYNCHRONIZATION CRITERIA FOR TWO BOOLEAN NETWORKS BASED ON LOGICAL CONTROL. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 2013, 23, 1350178.	1.7	15
141	Stability analysis of high-order Hopfield-type neural networks based on a new impulsive differential inequality. International Journal of Applied Mathematics and Computer Science, 2013, 23, 201-211.	1.5	7
142	Impulsive Control for the Synchronization of Chaotic Systems with Time Delay. Abstract and Applied Analysis, 2012, 2012, 1-13.	0.7	3
143	Functional observer design for a class of multi-input and multi-output nonlinear systems. Journal of the Franklin Institute, 2012, 349, 3046-3059.	3.4	7
144	High-order Schwarz-Pick Lemma for the Schur class on the polydisc. Indian Journal of Pure and Applied Mathematics, 2012, 43, 411-419.	0.5	0

#	Article	IF	Citations
145	Algebraic conditions on the controllability for a type of discreteâ€continuous systems with delays. International Journal of Adaptive Control and Signal Processing, 2012, 26, 469-481.	4.1	1
146	Higher-order Schwarz-Pick estimates for holomorphic self-mappings on classical domains. Chinese Annals of Mathematics Series B, 2012, 33, 601-608.	0.4	1
147	New results on global exponential stability for impulsive cellular neural networks with any bounded time-varying delays. Mathematical and Computer Modelling, 2012, 55, 837-843.	2.0	54
148	Controllability analysis of linear time-varying systems with multiple time delays and impulsive effects. Nonlinear Analysis: Real World Applications, 2012, 13, 558-568.	1.7	16
149	Simultaneous <l>H</l> ^{â^ž} Stabilization for a Class of Multi-input Nonlinear Systems. Zidonghua Xuebao/Acta Automatica Sinica, 2012, 38, 473-478.	0.3	3
150	Controllability for a Class of Linear Time-Varying Impulsive Systems With Time Delay in Control Input. IEEE Transactions on Automatic Control, 2011, 56, 395-399.	5.7	52
151	A New Fuzzy Impulsive Control of Chaotic Systems Based on T–S Fuzzy Model. IEEE Transactions on Fuzzy Systems, 2011, 19, 393-398.	9.8	81
152	Schwarz-pick estimates for bounded holomorphic functions on classical domains. Acta Mathematica Scientia, 2011, 31, 1377-1382.	1.0	4
153	T–S fuzzy model-based impulsive control for chaotic systems and its application. Mathematics and Computers in Simulation, 2011, 81, 2507-2516.	4.4	18
154	Schwarz–Pick estimates for holomorphic mappings from the polydisk to the unit ball. Journal of Mathematical Analysis and Applications, 2011, 376, 123-128.	1.0	9
155	Impulsive control of chaotic systems and its applications in synchronization. Chinese Physics B, 2011, 20, 050508.	1.4	9
156	Schwarz-Pick estimates for bounded holomorphic functions in the unit ball of â,, n. Acta Mathematica Sinica, English Series, 2010, 26, 901-908.	0.6	13
157	A note on Schwarz-Pick estimate. Chinese Annals of Mathematics Series B, 2010, 31, 343-346.	0.4	0
158	Schwarz-Pick estimates for positive real part holomorphic functions on unit ball and polydisc. Science China Mathematics, 2010, 53, 1017-1024.	1.7	3
159	A New Approach for Impulsive Stabilization of Liu's System. Communications in Theoretical Physics, 2010, 53, 994-998.	2.5	6
160	A new approach to practical stability of impulsive functional differential equations in terms of two measures. Journal of Computational and Applied Mathematics, 2009, 223, 449-458.	2.0	15
161	The classification of proper holomorphic mappings between special Hartogs triangles of different dimensions. Chinese Annals of Mathematics Series B, 2008, 29, 557-566.	0.4	2
162	Holomorphic Lefschetz fixed point formula for non-compact KÃĦler manifolds. Chinese Annals of Mathematics Series B, 2008, 29, 679-686.	0.4	1