Victor Manuel Pizones Ruiz-Henestrosa

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6704768/publications.pdf

Version: 2024-02-01

VICTOR MANUEL PIZONES

#	Article	IF	CITATIONS
1	Modification of foaming properties of soy protein isolate by high ultrasound intensity: Particle size effect. Ultrasonics Sonochemistry, 2015, 26, 48-55.	3.8	176
2	Green tea polyphenols-β-lactoglobulin nanocomplexes: Interfacial behavior, emulsification and oxidation stability of fish oil. Food Hydrocolloids, 2014, 35, 505-511.	5.6	140
3	Interfacial and foaming properties of enzyme-induced hydrolysis of sunflower protein isolate. Food Hydrocolloids, 2007, 21, 782-793.	5.6	86
4	Comparative behavior of protein or polysaccharide stabilized emulsion under inÂvitro gastrointestinal conditions. Food Hydrocolloids, 2016, 52, 47-56.	5.6	80
5	Milk and soy protein films at the air?water interface. Food Hydrocolloids, 2005, 19, 417-428.	5.6	75
6	Effect of limited hydrolysis of soy protein on the interactions with polysaccharides at the air–water interface. Food Hydrocolloids, 2007, 21, 813-822.	5.6	62
7	Behavior of protein interfacial films upon bile salts addition. Food Hydrocolloids, 2014, 36, 115-122.	5.6	59
8	Soy protein–polysaccharides interactions at the air–water interface. Food Hydrocolloids, 2007, 21, 804-812.	5.6	57
9	Effect of Sucrose on Functional Properties of Soy Globulins: Adsorption and Foam Characteristics. Journal of Agricultural and Food Chemistry, 2008, 56, 2512-2521.	2.4	48
10	Physicochemical, interfacial and emulsifying properties of a non-conventional exudate gum (Prosopis) Tj ETQqC) 0 0 rgBT //	Overlock 10 Ti 48
11	Limited Enzymatic Hydrolysis Can Improve the Interfacial and Foaming Characteristics of β-Conglycinin. Journal of Agricultural and Food Chemistry, 2007, 55, 1536-1545.	2.4	45
12	The impact of HPMC structure in the modulation of inÂvitro lipolysis: The role of bile salts. Food Hydrocolloids, 2017, 62, 251-261.	5.6	40
13	Effect of Aqueous Phase Composition on Stability of Sodium Caseinate/Sunflower oil Emulsions. Food and Bioprocess Technology, 2013, 6, 2406-2418.	2.6	39
14	Adsorption and Foaming Characteristics of Soy Globulins and Tween 20 Mixed Systems. Industrial & Engineering Chemistry Research, 2008, 47, 2876-2885.	1.8	38
15	Improving the functional properties of soy glycinin by enzymatic treatment. Adsorption and foaming characteristics. Food Hydrocolloids, 2009, 23, 377-386.	5.6	37
16	Impact of pectin or chitosan on bulk, interfacial and antioxidant properties of (+)-catechin and β-lactoglobulin ternary mixtures. Food Hydrocolloids, 2016, 55, 119-127.	5.6	33
17	Effects of pH, extrusion tip size and storage protocol on the structural properties of Ca(II)-alginate beads. Carbohydrate Polymers, 2019, 206, 749-756.	5.1	33
18	Interfacial and foaming interactions between casein glycomacropeptide (CMP) and propylene glycol alginate. Colloids and Surfaces B: Biointerfaces, 2012, 95, 214-221.	2.5	32

VICTOR MANUEL PIZONES

#	Article	IF	CITATIONS
19	Mixed soy globulins and β-lactoglobulin systems behaviour inÂaqueous solutions and at the air–water interface. Food Hydrocolloids, 2014, 35, 106-114.	5.6	32
20	Incorporation of beads into oral films for buccal and oral delivery of bioactive molecules. Carbohydrate Polymers, 2018, 194, 411-421.	5.1	32
21	Synergistic performance of lecithin and glycerol monostearate in oil/water emulsions. Colloids and Surfaces B: Biointerfaces, 2017, 151, 68-75.	2.5	27
22	The role of static and dynamic characteristics of diglycerol esters and β-lactoglobulin mixed films foaming. 1. Dynamic phenomena at the air–water interface. Food Hydrocolloids, 2008, 22, 1105-1116.	5.6	25
23	Studies on the interactions between bile salts and food emulsifiers under in vitro duodenal digestion conditions to evaluate their bile salt binding potential. Colloids and Surfaces B: Biointerfaces, 2019, 174, 493-500.	2.5	25
24	Comparative interfacial in vitro digestion of protein and polysaccharide oil/water films. Colloids and Surfaces B: Biointerfaces, 2018, 161, 547-554.	2.5	22
25	Foaming and surface properties of casein glycomacropeptide–gelatin mixtures as affected by their interactions in the aqueous phase. Food Hydrocolloids, 2013, 33, 48-57.	5.6	21
26	Formulation Engineering Can Improve the Interfacial and Foaming Properties of Soy Globulins. Journal of Agricultural and Food Chemistry, 2007, 55, 6339-6348.	2.4	18
27	In vitro digestibility and allergenicity of emulsified hen egg. Food Research International, 2012, 48, 404-409.	2.9	18
28	A Dynamic Light Scattering Study on the Complex Assembly of Glycinin Soy Globulin in Aqueous Solutions. JAOCS, Journal of the American Oil Chemists' Society, 2012, 89, 1183-1191.	0.8	16
29	Role of static and dynamic characteristics of diglycerol esters and β-lactoglobulin mixed films on foaming, 2: Adsorption and foaming. Food Hydrocolloids, 2008, 22, 1298-1309.	5.6	15
30	Behaviour of cyanidin-3-glucoside, β-lactoglobulin and polysaccharides nanoparticles in bulk and oil-in-water interfaces. Carbohydrate Polymers, 2015, 132, 460-471.	5.1	8
31	A new methodology to assess the solubility of fatty acids: Impact of food emulsifiers. Food Research International, 2021, 139, 109829.	2.9	4