Tandré Oey

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6704342/publications.pdf

Version: 2024-02-01

	566801	839053
1,281	15	18
citations	h-index	g-index
19	19	987
docs citations	times ranked	citing authors
	citations 19	1,281 15 citations h-index 19 19

#	Article	IF	CITATIONS
1	The Filler Effect: The Influence of Filler Content and Surface Area on Cementitious Reaction Rates. Journal of the American Ceramic Society, 2013, 96, 1978-1990.	1.9	303
2	Hydration and strength development in ternary portland cement blends containing limestone and fly ash or metakaolin. Cement and Concrete Composites, 2013, 39, 93-103.	4.6	244
3	On the feasibility of using phase change materials (PCMs) to mitigate thermal cracking in cementitious materials. Cement and Concrete Composites, 2014, 51, 14-26.	4.6	140
4	Simple methods to estimate the influence of limestone fillers on reaction and property evolution in cementitious materials. Cement and Concrete Composites, 2013, 42, 20-29.	4.6	96
5	The filler effect: The influence of filler content and type on the hydration rate of tricalcium silicate. Journal of the American Ceramic Society, 2017, 100, 3316-3328.	1.9	70
6	Clinkering-free cementation by fly ash carbonation. Journal of CO2 Utilization, 2018, 23, 117-127.	3.3	55
7	A comparison of intergrinding and blending limestone on reaction and strength evolution in cementitious materials. Construction and Building Materials, 2013, 43, 428-435.	3.2	51
8	An improved basis for characterizing the suitability of fly ash as a cement replacement agent. Journal of the American Ceramic Society, 2017, 100, 4785-4800.	1.9	48
9	Topological controls on the dissolution kinetics of glassy aluminosilicates. Journal of the American Ceramic Society, 2017, 100, 5521-5527.	1.9	48
10	Water Vapor Sorption in Cementitious Materialsâ€"Measurement, Modeling and Interpretation. Transport in Porous Media, 2014, 103, 69-98.	1.2	38
11	Machine learning can predict setting behavior and strength evolution of hydrating cement systems. Journal of the American Ceramic Society, 2020, 103, 480-490.	1.9	36
12	New insights into the prehydration of cement and its mitigation. Cement and Concrete Research, 2015, 70, 94-103.	4.6	34
13	The role of the network-modifier's field-strength in the chemical durability of aluminoborate glasses. Journal of Non-Crystalline Solids, 2019, 505, 279-285.	1.5	32
14	The Influence of Water Activity on the Hydration Rate of Tricalcium Silicate. Journal of the American Ceramic Society, 2016, 99, 2481-2492.	1.9	24
15	Calcium nitrate: A chemical admixture to inhibit aggregate dissolution and mitigate expansion caused by alkali-silica reaction. Cement and Concrete Composites, 2020, 110, 103592.	4.6	17
16	Rate controls on silicate dissolution in cementitious environments. RILEM Technical Letters, 0, 2, 67-73.	0.0	16
17	Enhancing Silicate Dissolution Kinetics in Hyperalkaline Environments. Journal of Physical Chemistry C, 2019, 123, 3687-3695.	1.5	12
18	Topological controls on aluminosilicate glass dissolution: Complexities induced in hyperalkaline aqueous environments. Journal of the American Ceramic Society, 2020, 103, 6198-6207.	1.9	12

Tandré Oey

#	Article	IF	CITATIONS
19	Electrochemically Enhanced Dissolution of Silica and Alumina in Alkaline Environments. Langmuir, 2019, 35, 15651-15660.	1.6	5