Coral Sanfeliu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6704198/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Discovery and In Vivo Proof of Concept of a Highly Potent Dual Inhibitor of Soluble Epoxide Hydrolase and Acetylcholinesterase for the Treatment of Alzheimer's Disease. Journal of Medicinal Chemistry, 2022, 65, 4909-4925.	2.9	22
2	Resveratrol confers neuroprotection against high-fat diet in a mouse model of Alzheimer's disease via modulation of proteolytic mechanisms. Journal of Nutritional Biochemistry, 2021, 89, 108569.	1.9	28
3	The pleiotropic neuroprotective effects of resveratrol in cognitive decline and Alzheimer's disease pathology: From antioxidant to epigenetic therapy. Ageing Research Reviews, 2021, 67, 101271.	5.0	115
4	From the Design to the <i>In Vivo</i> Evaluation of Benzohomoadamantane-Derived Soluble Epoxide Hydrolase Inhibitors for the Treatment of Acute Pancreatitis. Journal of Medicinal Chemistry, 2021, 64, 5429-5446.	2.9	12
5	Antibody Protection against Long-Term Memory Loss Induced by Monomeric C-Reactive Protein in a Mouse Model of Dementia. Biomedicines, 2021, 9, 828.	1.4	9
6	2-(Piperidin-4-yl)acetamides as Potent Inhibitors of Soluble Epoxide Hydrolase with Anti-Inflammatory Activity. Pharmaceuticals, 2021, 14, 1323.	1.7	2
7	Monomeric C-Reactive Protein Aggravates Secondary Degeneration after Intracerebral Haemorrhagic Stroke and May Function as a Sensor for Systemic Inflammation. Journal of Clinical Medicine, 2020, 9, 3053.	1.0	17
8	Soluble Epoxide Hydrolase Inhibition to Face Neuroinflammation in Parkinson's Disease: A New Therapeutic Strategy. Biomolecules, 2020, 10, 703.	1.8	21
9	Pharmacological Inhibition of Soluble Epoxide Hydrolase as a New Therapy for Alzheimer's Disease. Neurotherapeutics, 2020, 17, 1825-1835.	2.1	45
10	Microglial Hyperreactivity Evolved to Immunosuppression in the Hippocampus of a Mouse Model of Accelerated Aging and Alzheimer's Disease Traits. Frontiers in Aging Neuroscience, 2020, 12, 622360.	1.7	9
11	Resveratrol Induces Brain Resilience Against Alzheimer Neurodegeneration Through Proteostasis Enhancement. Molecular Neurobiology, 2019, 56, 1502-1516.	1.9	104
12	Role of Resveratrol and Selenium on Oxidative Stress and Expression of Antioxidant and Anti-Aging Genes in Immortalized Lymphocytes from Alzheimer's Disease Patients. Nutrients, 2019, 11, 1764.	1.7	69
13	Long-term exercise training improves memory in middle-aged men and modulates peripheral levels of BDNF and Cathepsin B. Scientific Reports, 2019, 9, 3337.	1.6	79
14	Altered slow (<1ÂHz) and fast (beta and gamma) neocortical oscillations in the 3xTg-AD mouse model of Alzheimer's disease under anesthesia. Neurobiology of Aging, 2019, 79, 142-151.	1.5	23
15	p17 from HIV induces brain endothelial cell angiogenesis through EGFR-1-mediated cell signalling activation. Laboratory Investigation, 2019, 99, 180-190.	1.7	6
16	Modelling physical resilience in ageing mice. Mechanisms of Ageing and Development, 2019, 177, 91-102.	2.2	13
17	Peripheral Maintenance of the Axis SIRT1-SIRT3 at Youth Level May Contribute to Brain Resilience in Middle-Aged Amateur Rugby Players. Frontiers in Aging Neuroscience, 2019, 11, 352.	1.7	10
18	Resveratrol modulates response against acute inflammatory stimuli in aged mouse brain. Experimental Gerontology, 2018, 102, 3-11.	1.2	23

#	Article	IF	CITATIONS
19	Understanding Epigenetics in the Neurodegeneration of Alzheimer's Disease: SAMP8 Mouse Model. Journal of Alzheimer's Disease, 2018, 62, 943-963.	1.2	67
20	Environmental Enrichment Improves Cognitive Deficits, AD Hallmarks and Epigenetic Alterations Presented in 5xFAD Mouse Model. Frontiers in Cellular Neuroscience, 2018, 12, 224.	1.8	70
21	Melatonin induces mechanisms of brain resilience against neurodegeneration. Journal of Pineal Research, 2018, 65, e12515.	3.4	59
22	Resveratrol Protects SAMP8 Brain Under Metabolic Stress: Focus on Mitochondrial Function and Wnt Pathway. Molecular Neurobiology, 2017, 54, 1661-1676.	1.9	55
23	Neuron–astrocyte signaling is preserved in the aging brain. Glia, 2017, 65, 569-580.	2.5	89
24	Proinsulin protects against age-related cognitive loss through anti-inflammatory convergent pathways. Neuropharmacology, 2017, 123, 221-232.	2.0	14
25	Neuronal p38α mediates synaptic and cognitive dysfunction in an Alzheimer's mouse model by controlling β-amyloid production. Scientific Reports, 2017, 7, 45306.	1.6	38
26	Metabolic Stress Induces Cognitive Disturbances and Inflammation in Aged Mice: Protective Role of Resveratrol. Rejuvenation Research, 2017, 20, 202-217.	0.9	44
27	HIV-1 matrix protein p17 misfolding forms toxic amyloidogenic assemblies that induce neurocognitive disorders. Scientific Reports, 2017, 7, 10313.	1.6	28
28	SIRT1 Overexpression in Mouse Hippocampus Induces Cognitive Enhancement Through Proteostatic and Neurotrophic Mechanisms. Molecular Neurobiology, 2017, 54, 5604-5619.	1.9	89
29	Plasma miR-34a-5p and miR-545-3p as Early Biomarkers of Alzheimer's Disease: Potential and Limitations. Molecular Neurobiology, 2017, 54, 5550-5562.	1.9	119
30	A diet enriched with plant sterols prevents the memory impairment induced by cholesterol loss in senescence-accelerated mice. Neurobiology of Aging, 2016, 48, 1-12.	1.5	17
31	Preservation of cell-survival mechanisms by the presenilin-1 K239N mutation may cause its milder clinical phenotype. Neurobiology of Aging, 2016, 46, 169-179.	1.5	5
32	Oxidative Stress Is a Central Target for Physical Exercise Neuroprotection Against Pathological Brain Aging. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2016, 71, 40-49.	1.7	106
33	Altered Blood Gene Expression of Tumor-Related Genes (PRKCB, BECN1, and CDKN2A) in Alzheimer's Disease. Molecular Neurobiology, 2016, 53, 5902-5911.	1.9	15
34	Epigenetic mechanisms underlying cognitive impairment and Alzheimer disease hallmarks in 5XFAD mice. Aging, 2016, 8, 664-684.	1.4	94
35	Monomeric C-reactive protein-a key molecule driving development of Alzheimer's disease associated with brain ischaemia?. Scientific Reports, 2015, 5, 13281.	1.6	93
36	In vitro caloric restriction induces protective genes and functional rejuvenation in senescent SAMP 8 astrocytes. Aging Cell, 2015, 14, 334-344.	3.0	16

#	Article	IF	CITATIONS
37	Epigenetic alterations in hippocampus of SAMP8 senescent mice and modulation by voluntary physical exercise. Frontiers in Aging Neuroscience, 2014, 6, 51.	1.7	65
38	Neuroprotective Role of Trans-Resveratrol in a Murine Model of Familial Alzheimer's Disease. Journal of Alzheimer's Disease, 2014, 42, 1209-1220.	1.2	141
39	Rcor2 underexpression in senescent mice: a target for inflammaging?. Journal of Neuroinflammation, 2014, 11, 126.	3.1	17
40	Physical exercise neuroprotects ovariectomized 3xTg-AD mice through BDNF mechanisms. Psychoneuroendocrinology, 2014, 45, 154-166.	1.3	53
41	Physical exercise improves synaptic dysfunction and recovers the loss of survival factors in 3xTg-AD mouse brain. Neuropharmacology, 2014, 81, 55-63.	2.0	114
42	Lentiâ€GDNF Gene Therapy Protects Against Alzheimer's Diseaseâ€Like Neuropathology in 3xTgâ€AD Mice and MC65 Cells. CNS Neuroscience and Therapeutics, 2014, 20, 961-972.	1.9	89
43	InÂvivo evaluation of amyloid deposition and brain glucose metabolism of 5XFAD mice using positron emission tomography. Neurobiology of Aging, 2013, 34, 1790-1798.	1.5	69
44	Dietary resveratrol prevents Alzheimer's markers and increases life span in SAMP8. Age, 2013, 35, 1851-1865.	3.0	224
45	Resveratrol: New Avenues for a Natural Compound in Neuroprotection. Current Pharmaceutical Design, 2013, 19, 6726-6731.	0.9	72
46	Learning capabilities and CA1-prefrontal synaptic plasticity in a mice model of accelerated senescence. Neurobiology of Aging, 2012, 33, 627.e13-627.e26.	1.5	29
47	Melatonin plus physical exercise are highly neuroprotective in the 3xTg-AD mouse. Neurobiology of Aging, 2012, 33, 1124.e13-1124.e29.	1.5	86
48	γ-Tocotrienol does not substantially protect DS neurons from hydrogen peroxide-induced oxidative injury. Nutrition and Metabolism, 2012, 9, 1.	1.3	65
49	Neurons from senescenceâ€accelerated SAMP8 mice are protected against frailty by the sirtuin 1 promoting agents melatonin and resveratrol. Journal of Pineal Research, 2012, 52, 271-281.	3.4	83
50	Physical Exercise Protects Against Alzheimer's Disease in 3xTg-AD Mice. Journal of Alzheimer's Disease, 2011, 24, 421-454.	1.2	223
51	Primary Cultures for Neurotoxicity Testing. Neuromethods, 2011, , 87-103.	0.2	10
52	In Vitro and In Vivo Activation of Astrocytes by Amyloid-Î ² is Potentiated by Pro-Oxidant Agents. Journal of Alzheimer's Disease, 2010, 20, 229-245.	1.2	42
53	Self-assembled multifunctional Fe/MgO nanospheres for magnetic resonance imaging and hyperthermia. Nanomedicine: Nanotechnology, Biology, and Medicine, 2010, 6, 362-370.	1.7	91
54	Modified Câ€Reactive Protein Is Expressed by Stroke Neovessels and Is a Potent Activator of Angiogenesis <i>In Vitro</i> . Brain Pathology, 2010, 20, 151-165.	2.1	77

#	Article	IF	CITATIONS
55	Gender-Specific Neuroimmunoendocrine Response to Treadmill Exercise in 3xTg-AD Mice. International Journal of Alzheimer's Disease, 2010, 2010, 1-17.	1.1	67
56	Matrix Metalloproteinase-9 and Cell Division in Neuroblastoma Cells and Bone Marrow Macrophages. American Journal of Pathology, 2010, 177, 2870-2885.	1.9	24
57	B-Cell Translocation Gene 2 Is Over-Expressed in Peri-Infarct Neurons after Ischaemic Stroke. Pathobiology, 2009, 76, 129-135.	1.9	11
58	Identification of pro-angiogenic markers in blood vessels from stroked-affected brain tissue using laser-capture microdissection. BMC Genomics, 2009, 10, 113.	1.2	28
59	Proteomic study of neuron and astrocyte cultures from senescenceâ€accelerated mouse SAMP8 reveals degenerative changes. Journal of Neurochemistry, 2009, 111, 945-955.	2.1	24
60	Spermine induces cell death in cultured human embryonic cerebral cortical neurons through Nâ€methylâ€Dâ€aspartate receptor activation. Journal of Neuroscience Research, 2008, 86, 861-872.	1.3	25
61	Dysfunction of astrocytes in senescenceâ€accelerated mice SAMP8 reduces their neuroprotective capacity. Aging Cell, 2008, 7, 630-640.	3.0	50
62	Expression of GDNF transgene in astrocytes improves cognitive deficits in aged rats. Neurobiology of Aging, 2008, 29, 1366-1379.	1.5	94
63	Exposure of glia to proâ€oxidant agents revealed selective Stat1 activation by H ₂ O ₂ and Jak2â€independent antioxidant features of the Jak2 inhibitor AG490. Glia, 2007, 55, 1313-1324.	2.5	36
64	Cellular prion protein is increased in the plasma and peri-infarcted brain tissue after acute stroke. Journal of Neuroscience Research, 2007, 85, 602-611.	1.3	41
65	Expression of Cyclin-Dependent Kinase 5 mRNA and Protein in the Human Brain Following Acute Ischemic Stroke. Brain Pathology, 2007, 17, 11-23.	2.1	51
66	Astrocytes aged in vitro show a decreased neuroprotective capacity. Journal of Neurochemistry, 2007, 101, 794-805.	2.1	130
67	Leukaemia inhibitory factor is over-expressed by ischaemic brain tissue concomitant with reduced plasma expression following acute stroke. European Journal of Neurology, 2007, 15, 071203214007010-???.	1.7	20
68	A microarray study of gene and protein regulation in human and rat brain following middle cerebral artery occlusion. BMC Neuroscience, 2007, 8, 93.	0.8	45
69	An iron-based T 1 contrast agent made of iron-phosphate complexes: In vitro and in vivo studies. Magnetic Resonance Materials in Physics, Biology, and Medicine, 2007, 20, 27-37.	1.1	15
70	Carboxyl-terminal fragment of amyloid precursor protein and hydrogen peroxide induce neuronal cell death through different pathways. Journal of Neural Transmission, 2006, 113, 1837-1845.	1.4	11
71	Expression of cyclinâ€dependent kinase 5 mRNA and protein in the human brain following acute ischemic stroke. FASEB Journal, 2006, 20, A460.	0.2	0
72	In vitro characterization of an Fe8 cluster as potential MRI contrast agent. NMR in Biomedicine, 2005, 18, 300-307.	1.6	24

#	Article	IF	CITATIONS
73	Down's syndrome astrocytes have greater antioxidant capacity than euploid astrocytes. European Journal of Neuroscience, 2004, 20, 2355-2366.	1.2	22
74	Neurotoxic effects of trimethyltin and triethyltin on human fetal neuron and astrocyte cultures: A comparative study with rat neuronal cultures and human cell lines. Toxicology Letters, 2004, 152, 35-46.	0.4	32
75	Neurotoxicity of organomercurial compounds. Neurotoxicity Research, 2003, 5, 283-305.	1.3	161
76	Peroxiredoxin 2 (PRDX2), an antioxidant enzyme, is underexpressed in Down syndrome fetal brains. Cellular and Molecular Life Sciences, 2003, 60, 1513-1523.	2.4	51
77	Evaluation of fluorescent dyes for measuring intracellular glutathione content in primary cultures of human neurons and neuroblastoma SH-SY5Y. , 2003, 51A, 16-25.		103
78	Transforming Growth Factor-α Attenuates N-Methyl-D-aspartic Acid Toxicity in Cortical Cultures by Preventing Protein Synthesis Inhibition through an Erk1/2-dependent Mechanism. Journal of Biological Chemistry, 2003, 278, 29552-29559.	1.6	26
79	Induction of heat shock proteins (HSPs) by sodium arsenite in cultured astrocytes and reduction of hydrogen peroxide-induced cell death. Journal of Neurochemistry, 2002, 83, 1338-1348.	2.1	81
80	Methylmercury Neurotoxicity in Cultures of Human Neurons, Astrocytes, Neuroblastoma Cells. NeuroToxicology, 2001, 22, 317-327.	1.4	105
81	Antioxidant compounds and Ca2+pathway blockers differentially protect against methylmercury and mercuric chloride neurotoxicity. Journal of Neuroscience Research, 2001, 66, 135-145.	1.3	98
82	Trimethyltin and Triethyltin Differentially Induce Spontaneous Noradrenaline Release from Rat Hippocampal Slices. Toxicology and Applied Pharmacology, 2000, 162, 189-196.	1.3	15
83	Pharmacological characterization of the effects of methylmercury and mercuric chloride on spontaneous noradrenaline release from rat hippocampal slices. Life Sciences, 2000, 67, 1219-1231.	2.0	25
84	Use of Human Central Nervous System Cell Cultures in Neurotoxicity Testing. Toxicology in Vitro, 1999, 13, 753-759.	1.1	16
85	Behavioral and Monoaminergic Changes After Lindane Exposure in Developing Rats. Neurotoxicology and Teratology, 1998, 20, 155-160.	1.2	26
86	The Mechanism for Hexachlorocyclohexane-Induced Cytotoxicity and Changes in Intracellular Ca2+Homeostasis in Cultured Cerebellar Granule Neurons Is Different for the γ- and Î-Isomers. Toxicology and Applied Pharmacology, 1997, 142, 31-39.	1.3	49
87	Properties of ryanodine receptors in cultured cerebellar granule neurons: Effects of hexachlorocyclohexane isomers and calcium. , 1997, 47, 27-33.		14
88	Effects of glucose and oxygen deprivation on phosphoinositide hydrolysis in cerebral cortex slices from neonatal rats. Life Sciences, 1996, 59, 587-597.	2.0	2
89	Stimulation of Phosphoinositide Hydrolysis by Î ³ - and δ-Hexachlorocyclohexane in Primary Cultures of Cerebellar Granule Cells: Interaction with Glutamate and Carbachol Receptor-Mediated Phosphoinositide Response and Effects of Specific Pharmacological Agents. Pesticide Biochemistry and Physiology. 1996, 55, 64-76.	1.6	0
90	Lindane cytotoxicity in cultured neocortical neurons is ameliorated by GABA and flunitrazepam. Journal of Neuroscience Research, 1994, 39, 663-668.	1.3	19

#	Article	IF	CITATIONS
91	Changes in regional brain 2[14C]deoxyglucose uptake induced in postnatal developing rats by single and repeated nonconvulsant doses of lindane. Pesticide Biochemistry and Physiology, 1992, 43, 241-252.	1.6	4
92	Regulation of neurotransmitter enzyme by quisqualate subtype glutamate receptors in cultured cerebellar and hippocampal neurons. Brain Research, 1992, 590, 109-117.	1.1	2
93	Regional effects on the cerebral concentration of noradrenaline, serotonin and dopamine in suckling rats after a single dose of lindane. Toxicology, 1991, 69, 43-54.	2.0	14
94	Behavioral changes induced in developing rats by an early postnatal exposure to lindane. Neurotoxicology and Teratology, 1990, 12, 591-595.	1.2	18
95	Cell-type specific effects of N-methyl-d-aspartate on biochemical differentiation of subcortical neurons in culture. International Journal of Developmental Neuroscience, 1990, 8, 379-389.	0.7	12
96	Development and regulation of excitatory amino acid receptors involved in the release of arachidonic acid in cultured hippocampal neural cells. Developmental Brain Research, 1990, 57, 55-62.	2.1	19
97	Exposure toN-methyl-d-aspartate increases release of arachidonic acid in primary cultures of rat hippocampal neurons and not in astrocytes. Brain Research, 1990, 526, 241-248.	1.1	165
98	Death of subcortical cholinergic neurons in certain neurodegenerative disorders may not be due to an overstimulation ofN-methyl-d-aspartate receptors. Brain Research, 1990, 506, 319-322.	1.1	5
99	Effects of L-asparaginase on rat embryonic development and yolk sac membrane in vitro. Teratology, 1989, 40, 375-386.	1.8	5
100	Regional distribution of lindane in rat brain. Toxicology, 1988, 49, 189-196.	2.0	11
101	Cerebral glucose uptake in lindane-treated rats. Toxicology, 1988, 49, 381-387.	2.0	10