List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6704183/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Engineered Mutants of a Marine Photosynthetic Purple Nonsulfur Bacterium with Increased Volumetric Productivity of Polyhydroxyalkanoate Bioplastics. ACS Synthetic Biology, 2022, 11, 909-920.	3.8	5
2	Multicolor SRS imaging with wavelength-tunable/switchable lasers. , 2022, , 115-125.		0
3	Sensitivity and noise in SRS microscopy. , 2022, , 21-40.		0
4	Phase locking of squeezed vacuum generated by a single-pass optical parametric amplifier. Optics Express, 2022, 30, 8002.	3.4	6
5	Probing Methionine Uptake in Live Cells by Deuterium Labeling and Stimulated Raman Scattering. Journal of Physical Chemistry B, 2022, 126, 1633-1639.	2.6	8
6	Direct visualization of general anesthetic propofol on neurons by stimulated Raman scattering microscopy. IScience, 2022, 25, 103936.	4.1	10
7	Precise amplitude and phase matching by integrating spatial light modulation and digital holography for pulsed squeezing. , 2022, , .		1
8	Photoswitchable stimulated Raman scattering spectroscopy and microscopy. , 2022, , .		0
9	Multicolor stimulated Raman scattering microscopy and its applications. , 2022, , .		Ο
10	Phase locking scheme for squeezed vacuum generated by single-pass optical parametric amplifier. , 2022, , .		0
11	Numerical analysis of the effects of higher-order modes and loss in waveguide optical parametric amplifiers. , 2022, , .		Ο
12	High-speed multicolor stimulated Raman imaging. , 2022, , .		0
13	Stimulated Raman scattering spectroscopy with quantum-enhanced balanced detection. Optics Express, 2022, 30, 18589.	3.4	12
14	Multicolour chemical imaging of plant tissues with hyperspectral stimulated Raman scattering microscopy. Analyst, The, 2021, 146, 1234-1238.	3.5	15
15	Sensitive detection of alkyne-terminated hydrophobic drug by surface-enhanced stimulated Raman scattering in cetyltrimethylammonium bromide-coated gold nanorod suspensions. Applied Physics Express, 2021, 14, 032003.	2.4	5
16	Low-loss microscope optics with an axicon-based beam shaper. Applied Optics, 2021, 60, 2252.	1.8	4
17	Reduction of excess intensity noise of picosecond Yb soliton fiber lasers in a >10-mW power regime. Optics Express, 2021, 29, 11702.	3.4	8
18	Photoswitchable stimulated Raman scattering spectroscopy and microscopy. Optics Letters, 2021, 46, 2176.	3.3	27

#	Article	IF	CITATIONS
19	Alkyne-Tagged Dopamines as Versatile Analogue Probes for Dopaminergic System Analysis. Analytical Chemistry, 2021, 93, 9345-9355.	6.5	7
20	Super-multiplex imaging of cellular dynamics and heterogeneity by integrated stimulated Raman and fluorescence microscopy. IScience, 2021, 24, 102832.	4.1	27
21	Low-intensity-noise wavelength-tunable picosecond Yb fiber laser. Japanese Journal of Applied Physics, 2021, 60, 080902.	1.5	1
22	Probing the Biogenesis of Polysaccharide Granules in Algal Cells at Sub-Organellar Resolution via Raman Microscopy with Stable Isotope Labeling. Analytical Chemistry, 2021, 93, 16796-16803.	6.5	3
23	Raman image-activated cell sorting. Nature Communications, 2020, 11, 3452.	12.8	116
24	Multicolor Activatable Raman Probes for Simultaneous Detection of Plural Enzyme Activities. Journal of the American Chemical Society, 2020, 142, 20701-20707.	13.7	64
25	Cellular internalization mechanism of novel Raman probes designed for plant cells. RSC Chemical Biology, 2020, 1, 204-208.	4.1	5
26	Double modulation SRS and SREF microscopy: signal contributions under pre-resonance conditions. Physical Chemistry Chemical Physics, 2020, 22, 21421-21427.	2.8	10
27	Intelligent image-activated cell sorting 2.0. Lab on A Chip, 2020, 20, 2263-2273.	6.0	93
28	Virtual-freezing fluorescence imaging flow cytometry. Nature Communications, 2020, 11, 1162.	12.8	93
29	Molecular Vibrational Imaging by Coherent Raman Scattering. , 2020, , 37-74.		3
30	Quantum-enhanced balanced detection for ultrasensitive transmission measurement. Journal of the Optical Society of America B: Optical Physics, 2020, 37, 3288.	2.1	21
31	Intelligent frequency-shifted optofluidic time-stretch quantitative phase imaging. Optics Express, 2020, 28, 519.	3.4	21
32	Molecular vibrational imaging by stimulated Raman scattering microscopy: principles and applications [Invited]. Chinese Optics Letters, 2020, 18, 121702.	2.9	13
33	Time-domain analysis on the pulsed squeezed vacuum detected with picosecond pulses. Journal of the Optical Society of America B: Optical Physics, 2020, 37, 1535.	2.1	7
34	An Yb Fiber Laser Generating Multi-Milliwatt Picosecond Pulses with Nearly Shot-Noise-Limited Intensity Noise. , 2020, , .		0
35	Realization of ultra-low-loss microscopic optics for quantum-enhanced imaging. , 2020, , .		0
36	Isolating Single <i>Euglena gracilis</i> Cells by Glass Microfluidics for Raman Analysis of Paramylon Biogenesis. Analytical Chemistry, 2019, 91, 9631-9639.	6.5	27

#	Article	IF	CITATIONS
37	High-speed microparticle isolation unlimited by Poisson statistics. Lab on A Chip, 2019, 19, 2669-2677.	6.0	23
38	Label-free chemical imaging flow cytometry by high-speed multicolor stimulated Raman scattering. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 15842-15848.	7.1	130
39	A practical guide to intelligent image-activated cell sorting. Nature Protocols, 2019, 14, 2370-2415.	12.0	71
40	Imaging of cellular uptake of boron cluster compound by stimulated Raman scattering microscopy. Applied Physics Express, 2019, 12, 112004.	2.4	10
41	Label-free stimulated Raman scattering microscopy visualizes changes in intracellular morphology during human epidermal keratinocyte differentiation. Scientific Reports, 2019, 9, 12601.	3.3	18
42	Multicolor Stimulated Raman Scattering Microscopy With Fast Wavelength-Tunable Yb Fiber Laser. IEEE Journal of Selected Topics in Quantum Electronics, 2019, 25, 1-11.	2.9	75
43	Axicon-based beam shaping for low-loss nonlinear microscopic optics. Journal of the Optical Society of America B: Optical Physics, 2019, 36, 1342.	2.1	9
44	Ghost imaging using a large-scale silicon photonic phased array chip. Optics Express, 2019, 27, 3817.	3.4	55
45	Synchronized subharmonic modulation in stimulated emission microscopy. Optics Express, 2019, 27, 27159.	3.4	5
46	Simple, stable, compact implementation of frequency-division-multiplexed microscopy by inline interferometry. Optics Letters, 2019, 44, 467.	3.3	6
47	Beam Shaping with Axicons for Low Loss Microscopy Optics. , 2019, , .		0
48	Functional Pulsed Fiber Lasers for Multicolor Stimulated Raman Scattering Microscopy. , 2019, , .		0
49	Comment on "Ghost cytometry― Science, 2019, 364, .	12.6	6
50	Optofluidic time-stretch microscopy: recent advances. Optical Review, 2018, 25, 464-472.	2.0	8
51	Octave Spanning Coherent Supercontinuum Comb Generation Based on Er-Doped Fiber Lasers and Their Characterization. IEEE Journal of Selected Topics in Quantum Electronics, 2018, 24, 1-9.	2.9	19
52	Optofluidic time-stretch quantitative phase microscopy. Methods, 2018, 136, 116-125.	3.8	35
53	Guest Editorial: Special Topic on Coherent Raman Spectroscopy and Imaging. APL Photonics, 2018, 3, 090401.	5.7	0
54	An Er fiber laser generating multi-milliwatt picosecond pulses with ultralow intensity noise. Japanese Journal of Applied Physics, 2018, 57, 108001.	1.5	6

#	Article	IF	CITATIONS
55	High-throughput imaging flow cytometry by optofluidic time-stretch microscopy. Nature Protocols, 2018, 13, 1603-1631.	12.0	112
56	Ultrafast confocal fluorescence microscopy beyond the fluorescence lifetime limit. Optica, 2018, 5, 117.	9.3	93
57	On-chip light-sheet fluorescence imaging flow cytometry at a high flow speed of 1 m/s. Biomedical Optics Express, 2018, 9, 3424.	2.9	35
58	High-Speed Imaging Meets Single-Cell Analysis. CheM, 2018, 4, 2278-2300.	11.7	37
59	Dual-polarization hyperspectral stimulated Raman scattering microscopy. Applied Physics Letters, 2018, 113, .	3.3	16
60	Intelligent Image-Activated Cell Sorting. Cell, 2018, 175, 266-276.e13.	28.9	395
61	Dual-polarization hyperspectral stimulated Raman scattering microscopy. , 2018, , .		Ο
62	Chemically-activatable alkyne-tagged probe for imaging microdomains in lipid bilayer membranes. Scientific Reports, 2017, 7, 41007.	3.3	26
63	Highâ€ŧhroughput, labelâ€free, singleâ€cell, microalgal lipid screening by machineâ€ŀearningâ€equipped optofluidic timeâ€stretch quantitative phase microscopy. Cytometry Part A: the Journal of the International Society for Analytical Cytology, 2017, 91, 494-502.	1.5	60
64	Label-free detection of aggregated platelets in blood by machine-learning-aided optofluidic time-stretch microscopy. Lab on A Chip, 2017, 17, 2426-2434.	6.0	65
65	Label-free detection of cellular drug responses by high-throughput bright-field imaging and machine learning. Scientific Reports, 2017, 7, 12454.	3.3	78
66	Monitoring Photosynthetic Activity in Microalgal Cells by Raman Spectroscopy with Deuterium Oxide as a Tracking Probe. ChemBioChem, 2017, 18, 2063-2068.	2.6	9
67	GHz Optical Time-Stretch Microscopy by Compressive Sensing. IEEE Photonics Journal, 2017, 9, 1-8.	2.0	12
68	High-throughput, label-free, multivariate cell analysis with optofluidic time-stretch microscopy. , 2017, , .		2
69	High-Speed Label-Free Spectroscopic Biological Imaging Based on Stimulated Raman Scattering MicroscopyHigh-Speed Label-Free Spectroscopic Biological Imaging Based on Stimulated Raman Scattering MicroscopyHigh-Speed Label-Free Spectroscopic Biological Imaging Based on Stimulated Raman Scattering Microscopy. The Review of Laser Engineering, 2017, 45, 328.	0.0	0
70	Non-staining imaging of keratinocyte differentiation with stimulated Raman scattering microscopy. Journal of Dermatological Science, 2016, 84, e134-e135.	1.9	0
71	Generation of synchronized picosecond pulses by a 106-µm gain-switched laser diode for stimulated Raman scattering microscopy. Optics Express, 2016, 24, 9617.	3.4	7
72	High-throughput label-free image cytometry and image-based classification of live Euglena gracilis. Biomedical Optics Express, 2016, 7, 2703.	2.9	34

#	Article	IF	CITATIONS
73	In situ visualization of intracellular morphology of epidermal cells using stimulated Raman scattering microscopy. Journal of Biomedical Optics, 2016, 21, 1.	2.6	17
74	Probing the metabolic heterogeneity of live Euglena gracilis with stimulated Raman scattering microscopy. Nature Microbiology, 2016, 1, 16124.	13.3	105
75	High-Throughput Accurate Single-Cell Screening of Euglena gracilis with Fluorescence-Assisted Optofluidic Time-Stretch Microscopy. PLoS ONE, 2016, 11, e0166214.	2.5	23
76	High-throughput optofluidic particle profiling with morphological and chemical specificity. Optics Letters, 2015, 40, 4803.	3.3	28
77	Fast wavelength-tunable picosecond pulses from a passively mode-locked Er fiber laser using a galvanometer-driven intracavity filter. Optics Express, 2015, 23, 15186.	3.4	21
78	On-line visualization of multicolor chemical images with stimulated Raman scattering spectral microscopy. Analyst, The, 2015, 140, 2984-2987.	3.5	13
79	Labelâ€free visualization of acetaminophenâ€induced liver injury by highâ€speed stimulated <scp>R</scp> aman scattering spectral microscopy and multivariate image analysis. Pathology International, 2014, 64, 518-526.	1.3	25
80	Stimulated Raman spectral microscope using synchronized Er- and Yb-fiber lasers. Japanese Journal of Applied Physics, 2014, 53, 052401.	1.5	17
81	RF spectral modulation caused by delayed interference and photodetection of optical noise. Optical Review, 2014, 21, 425-428.	2.0	0
82	Label-free medical imaging with high-speed stimulated Raman spectral microscopy. , 2013, , .		0
83	Femtosecond Laser Direct Joining of Copper with Polyethylene Terephthalate. Materials Transactions, 2013, 54, 926-930.	1.2	6
84	Sensitivity enhancement of fiber-laser-based stimulated Raman scattering microscopy by collinear balanced detection technique. Optics Express, 2012, 20, 13958.	3.4	74
85	Stimulated Raman hyperspectral imaging based on spectral filtering of broadband fiber laser pulses. Optics Letters, 2012, 37, 431.	3.3	73
86	High-speed molecular spectral imaging of tissue with stimulated Raman scattering. Nature Photonics, 2012, 6, 845-851.	31.4	421
87	Coherent raman fast spectral microscopy. , 2012, , .		0
88	<i>In situ</i> Micro-Raman Investigation of Spatio-Temporal Evolution of Heat in Ultrafast Laser Microprocessing of Glass. Japanese Journal of Applied Physics, 2012, 51, 102403.	1.5	16
89	Label-Free Biological Imaging Based on Stimulated Raman Scattering Microscopy. The Review of Laser Engineering, 2011, 39, 887-892.	0.0	0
90	Molecular discrimination imaging. Nature Photonics, 2011, 5, 71-72.	31.4	1

#	Article	IF	CITATIONS
91	Stimulated Raman scattering microscope with shot noise limited sensitivity using subharmonically synchronized laser pulses. Optics Express, 2010, 18, 13708.	3.4	109
92	Lateral Polarity Control in GaN Based on Selective Growth Procedure Using Carbon Mask Layers. Applied Physics Express, 2009, 2, 101001.	2.4	10
93	Depth-resolved observation of photoelastic effect by four-wave mixing microscopy. Optical Review, 2009, 16, 167-169.	2.0	3
94	Fabrication of diffractive optical elements inside polymers by femtosecond laser irradiation. Thin Solid Films, 2009, 518, 714-718.	1.8	10
95	Analysis and experimental assessment of the sensitivity of stimulated Raman scattering microscopy. Optics Express, 2009, 17, 3651.	3.4	275
96	Increasing diffraction efficiency by heating phase gratings formed by femtosecond laser irradiation in poly(methyl methacrylate). Applied Physics Letters, 2009, 94, .	3.3	21
97	Selective growth of GaN on sapphire substrates treated with focused femtosecond laser pulses. Journal of Crystal Growth, 2008, 310, 5278-5281.	1.5	3
98	Density characterization of femtosecond laser modification in polymers. Applied Physics Letters, 2008, 92, .	3.3	27
99	Broadband group delay dispersion compensation for a microscope objective lens with a specially-designed mechanical deformable mirror. Optics Express, 2008, 16, 2778.	3.4	4
100	Highly Sensitive Signal Detection in Stimulated Parametric Emission Microscopy Based on Two-Beam Interferometry. Japanese Journal of Applied Physics, 2008, 47, 8820-8824.	1.5	6
101	Characterization of bending-induced density change inside an optical fiber by use of four-wave mixing microscopy. , 2008, , .		0
102	Estimation of refractive index distribution inside transparent materials by use of four-wave mixing process. , 2007, , .		0
103	Estimation of refractive index distribution inside transparent materials by use of four-wave mixing process. , 2007, , .		0
104	External Synchronization of 160-GHz Optical Beat Signal by Optical Phase-Locked Loop Technique. IEEE Photonics Technology Letters, 2006, 18, 2457-2459.	2.5	14
105	Stationary rescaled pulse in dispersion-decreasing fiber for pedestal-free pulse compression. Optics Letters, 2006, 31, 1606.	3.3	37
106	Highly sensitive spectral interferometric four-wave mixing microscopy near the shot noise limit and its combination with two-photon excited fluorescence microscopy. Optics Express, 2006, 14, 11204.	3.4	17
107	Modulational Instability and Parametric Amplification Induced by Loss Dispersion in Optical Fibers. Physical Review Letters, 2004, 93, 163902.	7.8	61
108	Pictorial interpretation of quantum-enhanced measurements with wave functions. Journal of the Optical Society of America B: Optical Physics, 0, , .	2.1	2