Rodney T Venterea

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6703775/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Productivity limits and potentials of the principles of conservation agriculture. Nature, 2015, 517, 365-368.	13.7	1,005
2	Tillage and soil carbon sequestration—What do we really know?. Agriculture, Ecosystems and Environment, 2007, 118, 1-5.	2.5	971
3	When does no-till yield more? A global meta-analysis. Field Crops Research, 2015, 183, 156-168.	2.3	538
4	Climate, duration, and N placement determine N ₂ O emissions in reduced tillage systems: a metaâ€analysis. Global Change Biology, 2013, 19, 33-44.	4.2	347
5	Nitrogen Oxide and Methane Emissions under Varying Tillage and Fertilizer Management. Journal of Environmental Quality, 2005, 34, 1467-1477.	1.0	251
6	Biochar's role as an alternative N-fertilizer: ammonia capture. Plant and Soil, 2012, 350, 35-42.	1.8	242
7	Fertilizer Source and Tillage Effects on Yieldâ€Scaled Nitrous Oxide Emissions in a Corn Cropping System. Journal of Environmental Quality, 2011, 40, 1521-1531.	1.0	237
8	Challenges and opportunities for mitigating nitrous oxide emissions from fertilized cropping systems. Frontiers in Ecology and the Environment, 2012, 10, 562-570.	1.9	220
9	Calculating the Detection Limits of Chamber-based Soil Greenhouse Gas Flux Measurements. Journal of Environmental Quality, 2012, 41, 705-715.	1.0	174
10	Effects of elevated carbon dioxide and increased temperature on methane and nitrous oxide fluxes: evidence from field experiments. Frontiers in Ecology and the Environment, 2012, 10, 520-527.	1.9	172
11	Nitrous oxide emissions are enhanced in a warmer and wetter world. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 12081-12085.	3.3	155
12	Nitrite-driven nitrous oxide production under aerobic soil conditions: kinetics and biochemical controls. Global Change Biology, 2007, 13, 1798-1809.	4.2	148
13	Mechanisms and kinetics of nitric and nitrous oxide production during nitrification in agricultural soil. Global Change Biology, 2000, 6, 303-316.	4.2	140
14	Indirect nitrous oxide emissions from streams within the US Corn Belt scale with stream order. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 9839-9843.	3.3	131
15	Nitrite intensity explains N management effects on N2O emissions in maize. Soil Biology and Biochemistry, 2013, 66, 229-238.	4.2	125
16	Ammonium sorption and ammonia inhibition of nitrite-oxidizing bacteria explain contrasting soil N2O production. Scientific Reports, 2015, 5, 12153.	1.6	125
17	Nitrogen oxide gas emissions from temperate forest soils receiving long-term nitrogen inputs. Global Change Biology, 2003, 9, 346-357.	4.2	122
18	Simplified Method for Quantifying Theoretical Underestimation of Chamberâ€Based Trace Gas Fluxes. Journal of Environmental Quality, 2010, 39, 126-135.	1.0	103

#	Article	IF	CITATIONS
19	Polymerâ€Coated Urea Maintains Potato Yields and Reduces Nitrous Oxide Emissions in a Minnesota Loamy Sand. Soil Science Society of America Journal, 2010, 74, 419-428.	1.2	103
20	Biotic and abiotic immobilization of ammonium, nitrite, and nitrate in soils developed under different tree species in the Catskill Mountains, New York, USA. Global Change Biology, 2003, 9, 1591-1601.	4.2	101
21	Accuracy and Precision Analysis of Chamberâ€Based Nitrous Oxide Gas Flux Estimates. Soil Science Society of America Journal, 2009, 73, 1087-1093.	1.2	95
22	Urea Decreases Nitrous Oxide Emissions Compared with Anhydrous Ammonia in a Minnesota Corn Cropping System. Soil Science Society of America Journal, 2010, 74, 407-418.	1.2	92
23	Fertilizer and Irrigation Management Effects on Nitrous Oxide Emissions and Nitrate Leaching. Agronomy Journal, 2014, 106, 703-714.	0.9	84
24	Impact of reduced tillage and cover cropping on the greenhouse gas budget of a maize/soybean rotation ecosystem. Agriculture, Ecosystems and Environment, 2009, 134, 234-242.	2.5	83
25	Nitric and nitrous oxide emissions following fertilizer application to agricultural soil: Biotic and abiotic mechanisms and kinetics. Journal of Geophysical Research, 2000, 105, 15117-15129.	3.3	80
26	Gross nitrogen process rates in temperate forest soils exhibiting symptoms of nitrogen saturation. Forest Ecology and Management, 2004, 196, 129-142.	1.4	79
27	Nitrification gene ratio and free ammonia explain nitrite and nitrous oxide production in urea-amended soils. Soil Biology and Biochemistry, 2017, 111, 143-153.	4.2	76
28	Reconciling the differences between topâ€down and bottomâ€up estimates of nitrous oxide emissions for the U.S. Corn Belt. Global Biogeochemical Cycles, 2013, 27, 746-754.	1.9	71
29	Evaluation of Intensive "4R―Strategies for Decreasing Nitrous Oxide Emissions and Nitrogen Surplus in Rainfed Corn. Journal of Environmental Quality, 2016, 45, 1186-1195.	1.0	71
30	US agricultural nitrous oxide emissions: context, status, and trends. Frontiers in Ecology and the Environment, 2012, 10, 537-546.	1.9	70
31	Nitrogen fertilization reduces yield declines following no-till adoption. Field Crops Research, 2015, 183, 204-210.	2.3	69
32	Effects of Manure and Cultivation on Carbon Dioxide and Nitrous Oxide Emissions from a Corn Field under Mediterranean Conditions. Journal of Environmental Quality, 2010, 39, 437-448.	1.0	63
33	Soil Greenhouse Gas Emissions in Response to Corn Stover Removal and Tillage Management Across the US Corn Belt. Bioenergy Research, 2014, 7, 517-527.	2.2	60
34	Carbon and Nitrogen Storage are Greater under Biennial Tillage in a Minnesota Corn-Soybean Rotation. Soil Science Society of America Journal, 2006, 70, 1752-1762.	1.2	60
35	Split Application of Urea Does Not Decrease and May Increase Nitrous Oxide Emissions in Rainfed Corn. Agronomy Journal, 2015, 107, 337-348.	0.9	56
36	Identifying environmental drivers of greenhouse gas emissions under warming and reduced rainfall in boreal–temperate forests. Functional Ecology, 2017, 31, 2356-2368.	1.7	56

#	Article	IF	CITATIONS
37	Survey of nitrogen fertilizer use on corn in Minnesota. Agricultural Systems, 2012, 109, 43-52.	3.2	55
38	Profile Analysis and Modeling of Reduced Tillage Effects on Soil Nitrous Oxide Flux. Journal of Environmental Quality, 2008, 37, 1360-1367.	1.0	54
39	Performance of Agricultural Residue Media in Laboratory Denitrifying Bioreactors at Low Temperatures. Journal of Environmental Quality, 2016, 45, 779-787.	1.0	54
40	Regionalâ€scale controls on dissolved nitrous oxide in the Upper Mississippi River. Geophysical Research Letters, 2016, 43, 4400-4407.	1.5	54
41	Broadcast Urea Reduces N ₂ O but Increases NO Emissions Compared with Conventional and Shallowâ€Applied Anhydrous Ammonia in a Coarseâ€Textured Soil. Journal of Environmental Quality, 2011, 40, 1806-1815.	1.0	49
42	Nitrogen Immobilization and Mineralization Kinetics of Cattle, Hog, and Turkey Manure Applied to Soil. Soil Science Society of America Journal, 2008, 72, 1570-1579.	1.2	46
43	Global Research Alliance N ₂ O chamber methodology guidelines: Flux calculations. Journal of Environmental Quality, 2020, 49, 1141-1155.	1.0	46
44	Mechanisms of N2O production following chloropicrin fumigation. Applied Soil Ecology, 2006, 31, 101-109.	2.1	44
45	Fertilizer Management Effects on Nitrate Leaching and Indirect Nitrous Oxide Emissions in Irrigated Potato Production. Journal of Environmental Quality, 2011, 40, 1103-1112.	1.0	43
46	Nitrous Oxide Fluxes, Soil Oxygen, and Denitrification Potential of Urine―and Nonâ€Urineâ€Treated Soil under Different Irrigation Frequencies. Journal of Environmental Quality, 2016, 45, 1169-1177.	1.0	41
47	Longâ€lasting effects on nitrogen cycling 12 years after treatments cease despite minimal longâ€ŧerm nitrogen retention. Global Change Biology, 2009, 15, 1755-1766.	4.2	40
48	Effects of Soil Physical Nonuniformity on Chamberâ€Based Gas Flux Estimates. Soil Science Society of America Journal, 2008, 72, 1410-1417.	1.2	39
49	Soil emissions of nitric oxide in two forest watersheds subjected to elevated N inputs. Forest Ecology and Management, 2004, 196, 335-349.	1.4	38
50	Nitrous Oxide Fluxes and Soil Oxygen Dynamics of Soil Treated with Cow Urine. Soil Science Society of America Journal, 2017, 81, 289-298.	1.2	38
51	Urea Amendment Decreases Microbial Diversity and Selects for Specific Nitrifying Strains in Eight Contrasting Agricultural Soils. Frontiers in Microbiology, 2018, 9, 634.	1.5	37
52	Greenhouse gas production and emission from a forest nursery soil following fumigation with chloropicrin and methyl isothiocyanate. Soil Biology and Biochemistry, 2005, 37, 475-485.	4.2	36
53	Landscape Patterns of Net Nitrification in a Northern Hardwood-Conifer Forest. Soil Science Society of America Journal, 2003, 67, 527.	1.2	36
54	Denitrifying Bacteria Active in Woodchip Bioreactors at Low-Temperature Conditions. Frontiers in Microbiology, 2019, 10, 635.	1.5	33

#	Article	IF	CITATIONS
55	Theoretical Comparison of Advanced Methods for Calculating Nitrous Oxide Fluxes using Nonâ€steady State Chambers. Soil Science Society of America Journal, 2013, 77, 709-720.	1.2	30
56	Enhanced Efficiency Fertilizers: A Multi-Site Comparison of the Effects on Nitrous Oxide Emissions and Agronomic Performance. Agronomy Journal, 2014, 106, 679-680.	0.9	26
57	Nitrogen Management Affects Nitrous Oxide Emissions under Varying Cotton Irrigation Systems in the Desert Southwest, USA. Journal of Environmental Quality, 2018, 47, 70-78.	1.0	26
58	Split application of stabilized ammonium nitrate improved potato yield and nitrogen-use efficiency with reduced application rate in tropical sandy soils. Field Crops Research, 2020, 254, 107847.	2.3	24
59	Nitrite accumulation and nitrogen gas production increase with decreasing temperature in urea-amended soils: Experiments and modeling. Soil Biology and Biochemistry, 2020, 142, 107727.	4.2	24
60	Isolation and characterization of denitrifiers from woodchip bioreactors for bioaugmentation application. Journal of Applied Microbiology, 2020, 129, 590-600.	1.4	22
61	Co-application of DMPSA and NBPT with urea mitigates both nitrous oxide emissions and nitrate leaching during irrigated potato production. Environmental Pollution, 2021, 284, 117124.	3.7	21
62	A geostatistical approach to identify and mitigate agricultural nitrous oxide emission hotspots. Science of the Total Environment, 2016, 572, 442-449.	3.9	20
63	Contrasting effects of inhibitors and biostimulants on agronomic performance and reactive nitrogen losses during irrigated potato production. Field Crops Research, 2019, 240, 143-153.	2.3	20
64	Corn Nitrogen Management Influences Nitrous Oxide Emissions in Drained and Undrained Soils. Journal of Environmental Quality, 2016, 45, 1847-1855.	1.0	18
65	Density and pressure effects on the transport of gas phase chemicals in unsaturated porous media. Water Resources Research, 2003, 39, .	1.7	17
66	Soil Water Dynamics and Nitrate Leaching Under Corn–Soybean Rotation, Continuous Corn, and Kura Clover. Vadose Zone Journal, 2018, 17, 1-11.	1.3	17
67	Kura Clover Living Mulch: Spring Management Effects on Nitrogen. Agronomy, 2019, 9, 69.	1.3	16
68	NITROGEN OXIDE TRACE GAS TRANSPORT AND TRANSFORMATION: II. MODEL SIMULATIONS COMPARED WITH DATA. Soil Science, 2002, 167, 49-61.	0.9	14
69	Global Research Alliance N ₂ O chamber methodology guidelines: Introduction, with health and safety considerations. Journal of Environmental Quality, 2020, 49, 1073-1080.	1.0	13
70	Impact of Kura Clover Living Mulch on Nitrous Oxide Emissions in a Corn–Soybean System. Journal of Environmental Quality, 2016, 45, 1782-1787.	1.0	12
71	Temperature and water-level effects on greenhouse gas fluxes from black ash (Fraxinus nigra) wetland soils in the Upper Great Lakes region, USA. Applied Soil Ecology, 2020, 153, 103565.	2.1	12
72	Corn Response to Nitrogen Management under Fully-Irrigated vs. Water-Stressed Conditions. Agronomy Journal, 2016, 108, 2089-2098.	0.9	11

4

#	Article	IF	CITATIONS
73	Effects of Nitrogen Fertilizer Types on Nitrous Oxide Emissions. ACS Symposium Series, 2011, , 179-202.	0.5	10
74	Elevated CO2 and O3 modify N turnover rates, but not N2O emissions in a soybean agroecosystem. Soil Biology and Biochemistry, 2012, 51, 104-114.	4.2	10
75	Anhydrous Ammonia Injection Depth Does Not Affect Nitrous Oxide Emissions in a Silt Loam over Two Growing Seasons. Journal of Environmental Quality, 2014, 43, 1527-1535.	1.0	10
76	Modeling nitrous oxide mitigation potential of enhanced efficiency nitrogen fertilizers from agricultural systems. Science of the Total Environment, 2021, 801, 149342.	3.9	10
77	Assessing Microbial Contributions to N2O Impacts Following Biochar Additions. Agronomy, 2014, 4, 478-496.	1.3	9
78	Temperature alters dicyandiamide (DCD) efficacy for multiple reactive nitrogen species in urea-amended soils: Experiments and modeling. Soil Biology and Biochemistry, 2021, 160, 108341.	4.2	9
79	USDA-ARS Clobal Change Research on Rangelands and Pasturelands. Rangelands, 2005, 27, 36-42.	0.9	8
80	Measurements and Models to Identify Agroecosystem Practices That Enhance Soil Organic Carbon under Changing Climate. Journal of Environmental Quality, 2018, 47, 579-587.	1.0	8
81	Response of nitrous oxide emissions to individual rain events and future changes in precipitation. Journal of Environmental Quality, 2022, 51, 312-324.	1.0	8
82	NITROGEN OXIDE TRACE GAS TRANSPORT AND TRANSFORMATION: I. EVALUATION OF DATA FROM INTACT SOIL CORES. Soil Science, 2002, 167, 35-48.	0.9	7
83	Kura Clover Living Mulch Reduces Fertilizer N Requirements and Increases Profitability of Maize. Agronomy, 2019, 9, 432.	1.3	7
84	Phosphorus and Greenhouse Gas Dynamics in a Drained Calcareous Wetland Soil in Minnesota. Journal of Environmental Quality, 2009, 38, 2147-2158.	1.0	6
85	Plastic Biofilm Carrier after Corn Cobs Reduces Nitrate Loading in Laboratory Denitrifying Bioreactors. Journal of Environmental Quality, 2017, 46, 915-920.	1.0	6
86	The role of alanine synthesis and nitrateâ€induced nitric oxide production during hypoxia stress in <i>Cucurbita pepo</i> nectaries. Plant Journal, 2021, 105, 580-599.	2.8	6
87	Quantifying Biases in Non-Steady-State Chamber Measurements of Soil–Atmosphere Gas Exchange. , 2012, , 327-343.		5
88	Managing biogeochemical cycles to reduce greenhouse gases. Frontiers in Ecology and the Environment, 2012, 10, 511-511.	1.9	4
89	Do Soil Tests Help Forecast Nitrogen Response in Firstâ€Year Corn Following Alfalfa on Fineâ€Textured Soils?. Soil Science Society of America Journal, 2017, 81, 1640-1651.	1.2	4

90 LANDSCAPE AND REGIONAL SCALE STUDIES OF NITROGEN GAS FLUXES. , 2006, , 191-203.

#	Article	IF	CITATIONS
91	Nitrous oxide emissions, N uptake, biomass, and rubber yield in N-fertilized, surface-irrigated guayule. Industrial Crops and Products, 2021, 167, 113561.	2.5	3
92	Capture efficiency of four chamber designs for measuring ammonia emissions. , 2021, 4, e20199.		3
93	Measurement of nitrous oxide concentrations from Wisconsin dairy barns. , 2009, , .		2
94	Nitrogen Management Affects Nitrous Oxide Emissions under Varying Cotton Irrigation Systems in the Desert Southwest, USA. Journal of Environmental Quality, 2018, 47, 1572-1572.	1.0	2
95	Effect of simulated emerald ash borer infestation on nitrogen cycling in black ash (Fraxinus nigra) wetlands in northern Minnesota, USA. Forest Ecology and Management, 2020, 458, 117769.	1.4	2
96	Evaluation of Intensive "4R―Strategies for Decreasing Nitrous Oxide Emissions and Nitrogen Surplus in Rainfed Corn. Journal of Environmental Quality, 2017, 46, 478-478.	1.0	1
97	Ammonium sorption and ammonia inhibition of nitrite-oxidizing bacteria explain contrasting soil N2O production. , 0, .		1
98	Greening Vermont: The Search for a Sustainable State. Journal of Environmental Quality, 2013, 42, 1908-1908.	1.0	0
99	Aeration. , 2022, , .		Ο