List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6703716/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Global spread of hypoxia in freshwater ecosystems during the last three centuries is caused by rising local human pressure. Global Change Biology, 2016, 22, 1481-1489.	9.5	248
2	â€~Are fish what they eat' all year round?. Oecologia, 2005, 144, 598-606.	2.0	229
3	Scientists' Warning to Humanity: Rapid degradation of the world's large lakes. Journal of Great Lakes Research, 2020, 46, 686-702.	1.9	140
4	Using the δ13C and δ15N of whitefish scales for retrospective ecological studies: changes in isotope signatures during the restoration of Lake Geneva, 1980-2001. Journal of Fish Biology, 2003, 63, 1197-1207.	1.6	80
5	Assessing the reliability of fatty acid–specific stable isotope analysis for trophic studies. Methods in Ecology and Evolution, 2011, 2, 651-659.	5.2	74
6	Tracking a century of changes in microbial eukaryotic diversity in lakes driven by nutrient enrichment and climate warming. Environmental Microbiology, 2017, 19, 2873-2892.	3.8	64
7	A spatiotemporal investigation of varved sediments highlights the dynamics of hypolimnetic hypoxia in a large hardâ€water lake over the last 150 years. Limnology and Oceanography, 2013, 58, 1395-1408.	3.1	55
8	Quantitative PCR Enumeration of Total/Toxic Planktothrix rubescens and Total Cyanobacteria in Preserved DNA Isolated from Lake Sediments. Applied and Environmental Microbiology, 2011, 77, 8744-8753.	3.1	51
9	Fatty acid transfer in the food web of a coastal Mediterranean lagoon: Evidence for high arachidonic acid retention in fish. Estuarine, Coastal and Shelf Science, 2011, 91, 450-461.	2.1	50
10	Carbon pathways to zooplankton: insights from the combined use of stable isotope and fatty acid biomarkers. Freshwater Biology, 2006, 51, 2041-2051.	2.4	49
11	Local forcings affect lake zooplankton vulnerability and response to climate warming. Ecology, 2013, 94, 2767-2780.	3.2	49
12	There's no harm in having too much: A comprehensive toolbox of methods in trophic ecology. Food Webs, 2018, 17, e00100.	1.2	47
13	A century of bottom-up and top-down driven changes on a lake planktonic food web: A paleoecological and paleoisotopic study of Lake Annecy, France. Limnology and Oceanography, 2010, 55, 803-816.	3.1	47
14	Laboratory measures of isotope discrimination factors: <scp>c</scp> omments on Caut, Angulo & Courchamp (2008, 2009). Journal of Applied Ecology, 2010, 47, 942-947.	4.0	46
15	A century of humanâ€driven changes in the carbon dioxide concentration of lakes. Global Biogeochemical Cycles, 2016, 30, 93-104.	4.9	46
16	High-resolution paleolimnology opens new management perspectives for lakes adaptation to climate warming. Frontiers in Ecology and Evolution, 2015, 3, .	2.2	45
17	How pollen organic matter enters freshwater food webs. Limnology and Oceanography, 2013, 58, 1185-1195.	3.1	43
18	DNA from lake sediments reveals the long-term dynamics and diversity of <i>Synechococcus</i> assemblages. Biogeosciences, 2013, 10, 3817-3838.	3.3	42

#	Article	IF	CITATIONS
19	A 4D sedimentological approach to reconstructing the flood frequency and intensity of the Rhône River (Lake Bourget, NW European Alps). Journal of Paleolimnology, 2014, 51, 469-483.	1.6	42
20	Inherited hypoxia: A new challenge for reoligotrophicated lakes under global warming. Global Biogeochemical Cycles, 2014, 28, 1413-1423.	4.9	41
21	Storm impacts on alpine lakes: Antecedent weather conditions matter more than the event intensity. Global Change Biology, 2018, 24, 5004-5016.	9.5	41
22	Sensitivity and responses of diatoms to climate warming in lakes heavily influenced by humans. Freshwater Biology, 2014, 59, 1755-1767.	2.4	40
23	Nutritional importance of minor dietary sources for leaping grey mullet Liza saliens (Mugilidae) during settlement: insights from fatty acid δ13C analysis. Marine Ecology - Progress Series, 2010, 404, 207-217.	1.9	40
24	Hydroacoustic assessment of young-of-year perch, Perca fluviatilis, population dynamics in an oligotrophic lake (Lake Annecy, France). Fisheries Management and Ecology, 2006, 13, 319-327.	2.0	39
25	Potential of δ13C and δ15N of cladoceran subfossil exoskeletons for paleo-ecological studies. Journal of Paleolimnology, 2010, 44, 387-395.	1.6	39
26	Seasonal variability inÂtheÂl´13C andÂl´15N values ofÂtheÂzooplankton taxa inÂtwoÂalpine lakes. Acta Oecologica, 2006, 30, 69-77.	1.1	36
27	Changes in whitefish scales δ ¹³ C during eutrophication and reoligotrophication of subalpine lakes. Limnology and Oceanography, 2006, 51, 772-780.	3.1	35
28	Essential fatty acid concentrations of different seston sizes and zooplankton: a field study of monomictic coastal lakes. Journal of Plankton Research, 2009, 31, 635-645.	1.8	35
29	Re-examination of the temperature-dependent relationship between δ18Odiatoms and δ18Olake water and implications for paleoclimate inferences. Journal of Paleolimnology, 2010, 44, 547-557.	1.6	34
30	Are cyanobacterial blooms trophic dead ends?. Oecologia, 2013, 172, 551-562.	2.0	34
31	Effects of nutrients and warming on <i><scp>P</scp>lanktothrix</i> dynamics and diversity: a palaeolimnological view based on sedimentary <scp>DNA</scp> and <scp>RNA</scp> . Freshwater Biology, 2015, 60, 31-49.	2.4	34
32	Food quality of anemophilous plant pollen for zooplankton. Limnology and Oceanography, 2011, 56, 939-946.	3.1	33
33	Reconstructing longâ€ŧerm changes (150Âyears) in the carbon cycle of a clearâ€water lake based on the stable carbon isotope composition (δ ¹³ C) of chironomid and cladoceran subfossil remains. Freshwater Biology, 2014, 59, 789-802.	2.4	33
34	Taphonomic and early diagenetic effects on the C and N stable isotope composition of cladoceran remains: implications for paleoecological studies. Journal of Paleolimnology, 2011, 46, 203-213.	1.6	30
35	Changes in the δ13C of pelagic food webs: the influence of lake area and trophic status on the isotopic signature of whitefish (Coregonus lavaretus). Canadian Journal of Fisheries and Aquatic Sciences, 2004, 61, 1485-1492.	1.4	29
36	Tracking a century of change in trophic structure and dynamics in a floodplain wetland: integrating palaeoecological and palaeoisotopic evidence. Freshwater Biology, 2015, 60, 711-723.	2.4	27

#	Article	IF	CITATIONS
37	Seeking alternative stable states in a deep lake. Freshwater Biology, 2018, 63, 553-568.	2.4	26
38	How well can the fatty acid content of lake seston be predicted from its taxonomic composition?. Freshwater Biology, 2010, 55, 1958-1972.	2.4	25
39	Chironomid assemblages in cores from multiple water depths reflect oxygen-driven changes in a deep French lake over the last 150Âyears. Journal of Paleolimnology, 2013, 50, 257-273.	1.6	25
40	Trophic history of French sub-alpine lakes over the last ~150 years: phosphorus reconstruction and assessment of taphonomic biases. Journal of Limnology, 2013, 72, 34.	1.1	25
41	Can we detect ecosystem critical transitions and signals of changing resilience from paleoâ€ecological records?. Ecosphere, 2018, 9, e02438.	2.2	25
42	Variability in epilimnion depth estimations in lakes. Hydrology and Earth System Sciences, 2020, 24, 5559-5577.	4.9	25
43	Historical Profiles of PCB in Dated Sediment Cores Suggest Recent Lake Contamination through the "Halo Effect― Environmental Science & Technology, 2015, 49, 1303-1310.	10.0	22
44	Origins of carbon sustaining the growth of whitefish <i>Coregonus lavaretus</i> early larval stages in Lake Annecy: insights from fattyâ€acid biomarkers. Journal of Fish Biology, 2009, 74, 2-17.	1.6	21
45	<scp>LéXPLORE</scp> : A floating laboratory on Lake Geneva offering unique lake research opportunities. Wiley Interdisciplinary Reviews: Water, 2021, 8, e1544.	6.5	20
46	Trophic position and individual feeding habits as drivers of differential PCB bioaccumulation in fish populations. Science of the Total Environment, 2019, 674, 472-481.	8.0	19
47	Local human pressures influence gene flow in a hybridizing <i>Daphnia</i> species complex. Journal of Evolutionary Biology, 2016, 29, 720-735.	1.7	18
48	Mass budget in two high altitude lakes reveals their role as atmospheric PCB sinks. Science of the Total Environment, 2015, 511, 203-213.	8.0	17
49	Large and deep perialpine lakes: a paleolimnological perspective for the advance of ecosystem science. Hydrobiologia, 2018, 824, 291-321.	2.0	16
50	Non-conservative patterns of dissolved organic matter degradation when and where lake water mixes. Aquatic Sciences, 2019, 81, 1.	1.5	16
51	Effects of production, sedimentation and taphonomic processes on the composition and size structure of sedimenting cladoceran remains in a large deep subalpine lake: paleo-ecological implications. Hydrobiologia, 2011, 676, 101-116.	2.0	15
52	Changes in carbon sources fueling benthic secondary production over depth and time: coupling Chironomidae stable carbon isotopes to larval abundance. Oecologia, 2015, 178, 603-614.	2.0	15
53	Climate controls on the Holocene development of a subarctic lake in northern Fennoscandia. Quaternary Science Reviews, 2015, 126, 175-185.	3.0	15
54	Are flood-driven turbidity currents hot spots for priming effect in lakes?. Biogeosciences, 2016, 13, 3573-3584.	3.3	15

#	Article	IF	CITATIONS
55	Particle-Dissolved Phase Partition of Polychlorinated Biphenyls in High Altitude Alpine Lakes. Environmental Science & Technology, 2015, 49, 9620-9628.	10.0	14
56	Depthâ€specific responses of a chironomid assemblage to contrasting anthropogenic pressures: a palaeolimnological perspective from the last 150Âyears. Freshwater Biology, 2014, 59, 26-40.	2.4	13
57	Paleoecological evidence for a multi-trophic regime shift in a perialpine lake (Lake Joux, Switzerland). Anthropocene, 2021, 35, 100301.	3.3	12
58	Seasonal variations in fish δ13C and δ15N in two West African reservoirs, Sélingué and Manantali (Mali): Modifications of trophic links in relation to water level§. Isotopes in Environmental and Health Studies, 2005, 41, 109-123.	1.0	9
59	Terrestrial carbon contribution to lake food webs: could the classical stable isotope approach be misleading?. Canadian Journal of Fisheries and Aquatic Sciences, 2008, 65, 2719-2727.	1.4	9
60	Parasitic versus nutritional regulation of natural fish populations. Ecology and Evolution, 2018, 8, 8713-8725.	1.9	9
61	Lateral variations and vertical structure of the microbial methane cycle in the sediment of Lake Onego (Russia). Inland Waters, 2019, 9, 205-226.	2.2	8
62	Enhanced bioavailability of dissolved organic matter (DOM) in human-disturbed streams in Alpine fluvial networks. Biogeosciences, 2022, 19, 187-200.	3.3	7
63	Causal networks reveal the dominance of bottom-up interactions in large, deep lakes. Ecological Modelling, 2018, 368, 136-146.	2.5	6
64	Using stable isotope approach to quantify pond dam impacts on isotopic niches and assimilation of resources by invertebrates in temporary streams: a case study. Hydrobiologia, 2019, 834, 163-181.	2.0	6
65	Whiting Events in a Large Periâ€Alpine Lake: Evidence of a Catchmentâ€Scale Process. Journal of Geophysical Research G: Biogeosciences, 2022, 127, .	3.0	6
66	Bioconcentration may be favoured over biomagnification for fish PCB contamination in high altitude lakes. Inland Waters, 2017, 7, 14-26.	2.2	5
67	Fasting or feeding: A planktonic food web under lake ice. Freshwater Biology, 2021, 66, 570-581.	2.4	5
68	Accounting for surface waves improves gas flux estimation at high wind speed in a large lake. Earth System Dynamics, 2021, 12, 1169-1189.	7.1	5
69	A rotiferan version of the punishment of Sisyphus?. Ecology, 2020, 101, e02934.	3.2	3
70	Reframing Lake Geneva ecological trajectory in a context of multiple but asynchronous pressures. Journal of Paleolimnology, 2021, 65, 353-368.	1.6	3
71	Hydropower operations modulate sensitivity to meteorological forcing in a high altitude reservoir. Aquatic Sciences, 2020, 82, 1.	1.5	2
72	Indicators of climate: Ecrins National Park participates in long-term monitoring to help determine the effects of climate change. Eco Mont, 2015, 8, 44-52.	0.1	2

#	Article	IF	CITATIONS
73	Heterogeneous responses of lake CO2 to nutrients and warming in perialpine lakes imprinted in subfossil cladoceran δ13C values. Science of the Total Environment, 2021, 782, 146923.	8.0	0