Mark R Mayford

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6702978/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Subregion- and Cell Type–Restricted Gene Knockout in Mouse Brain. Cell, 1996, 87, 1317-1326.	28.9	1,207
2	The Molecular and Systems Biology of Memory. Cell, 2014, 157, 163-186.	28.9	833
3	CBP Histone Acetyltransferase Activity Is a Critical Component of Memory Consolidation. Neuron, 2004, 42, 961-972.	8.1	764
4	A shared neural ensemble links distinct contextual memories encoded close in time. Nature, 2016, 534, 115-118.	27.8	756
5	Localization of a Stable Neural Correlate of Associative Memory. Science, 2007, 317, 1230-1233.	12.6	667
6	CaMKII regulates the frequency-response function of hippocampal synapses for the production of both LTD and LTP. Cell, 1995, 81, 891-904.	28.9	572
7	Disruption of Dendritic Translation of CaMKIIα Impairs Stabilization of Synaptic Plasticity and Memory Consolidation. Neuron, 2002, 36, 507-519.	8.1	482
8	Impairment of spatial but not contextual memory in CaMKII mutant mice with a selective loss of hippocampal ltp in the range of the \hat{l}_s frequency. Cell, 1995, 81, 905-915.	28.9	470
9	Synapses and Memory Storage. Cold Spring Harbor Perspectives in Biology, 2012, 4, a005751-a005751.	5.5	366
10	Restricted and Regulated Overexpression Reveals Calcineurin as a Key Component in the Transition from Short-Term to Long-Term Memory. Cell, 1998, 92, 39-49.	28.9	336
11	Generation of a Synthetic Memory Trace. Science, 2012, 335, 1513-1516.	12.6	335
12	Direct Reactivation of a Coherent Neocortical Memory of Context. Neuron, 2014, 84, 432-441.	8.1	300
13	Locally Synchronized Synaptic Inputs. Science, 2012, 335, 353-356.	12.6	280
14	Spine-Type-Specific Recruitment of Newly Synthesized AMPA Receptors with Learning. Science, 2008, 319, 1104-1107.	12.6	262
15	Genetic approaches to memory storage. Trends in Genetics, 1999, 15, 463-470.	6.7	248
16	Mice Expressing Activated CaMKII Lack Low Frequency LTP and Do Not Form Stable Place Cells in the CA1 Region of the Hippocampus. Cell, 1996, 87, 1351-1361.	28.9	243
17	Inducible and Reversible Gene Expression with the rtTA System for the Study of Memory. Neuron, 1998, 21, 257-265.	8.1	239
18	Impaired maturation of dendritic spines without disorganization of cortical cell layers in mice lacking NRG1/ErbB signaling in the central nervous system. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 4507-4512.	7.1	178

Mark R Mayford

#	Article	IF	CITATIONS
19	Selection of distinct populations of dentate granule cells in response to inputs as a mechanism for pattern separation in mice. ELife, 2013, 2, e00312.	6.0	140
20	Epigenetic Mechanisms and Gene Networks in the Nervous System. Journal of Neuroscience, 2005, 25, 10379-10389.	3.6	128
21	Nuclear Calcium/Calmodulin Regulates Memory Consolidation. Journal of Neuroscience, 2004, 24, 10858-10867.	3.6	110
22	Optogenetic reactivation of memory ensembles in the retrosplenial cortex induces systems consolidation. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 8576-8581.	7.1	105
23	Transgenic approaches to cognition. Current Opinion in Neurobiology, 1995, 5, 141-148.	4.2	101
24	CaMKII Activation in the Entorhinal Cortex Disrupts Previously Encoded Spatial Memory. Neuron, 2006, 50, 309-318.	8.1	97
25	Transgenic Calmodulin-Dependent Protein Kinase II Activation: Dose-Dependent Effects on Synaptic Plasticity, Learning, and Memory. Journal of Neuroscience, 2002, 22, 5719-5726.	3.6	92
26	Inducible control of gene expression with destabilized Cre. Nature Methods, 2013, 10, 1085-1088.	19.0	92
27	Transgenically Targeted Rabies Virus Demonstrates a Major Monosynaptic Projection from Hippocampal Area CA2 to Medial Entorhinal Layer II Neurons. Journal of Neuroscience, 2013, 33, 14889-14898.	3.6	89
28	Elimination of Dendritic Spines with Long-Term Memory Is Specific to Active Circuits. Journal of Neuroscience, 2012, 32, 12570-12578.	3.6	86
29	ermC leader peptide. Journal of Molecular Biology, 1989, 206, 69-79.	4.2	75
30	Empathic Fear Responses in Mice Are Triggered by Recognition of a Shared Experience. PLoS ONE, 2013, 8, e74609.	2.5	71
31	Memory and behavior: a second generation of genetically modified mice. Current Biology, 1997, 7, R580-R589.	3.9	55
32	Characterization of NMDAR-Independent Learning in the Hippocampus. Frontiers in Behavioral Neuroscience, 2011, 5, 28.	2.0	55
33	Quantitative Proteomics and Protein Network Analysis of Hippocampal Synapses of CaMKIIα Mutant Mice. Journal of Proteome Research, 2007, 6, 3127-3133.	3.7	49
34	Distinct memory engrams in the infralimbic cortex of rats control opposing environmental actions on a learned behavior. ELife, 2016, 5, .	6.0	46
35	A Functionally Defined <i>In Vivo</i> Astrocyte Population Identified by c-Fos Activation in a Mouse Model of Multiple Sclerosis Modulated by S1P Signaling: Immediate-Early Astrocytes (<i>ieAstrocytes</i>). ENeuro, 2018, 5, ENEURO.0239-18.2018.	1.9	46
36	AMPAR-Independent Effect of Striatal αCaMKII Promotes the Sensitization of Cocaine Reward. Journal of Neuroscience, 2012, 32, 6578-6586.	3.6	45

MARK R MAYFORD

#	Article	IF	CITATIONS
37	Cognition Enhancement Strategies: Figure 1 Journal of Neuroscience, 2010, 30, 14987-14992.	3.6	42
38	Genetic control of active neural circuits. Frontiers in Molecular Neuroscience, 2009, 2, 27.	2.9	39
39	Messenger RNA from Staphylococcus aureus that specifies macrolide-lincosamide-streptogramin resistance demonstration of its conformations and of the leader peptide it encodes. Journal of Molecular Biology, 1985, 185, 769-780.	4.2	38
40	Cellular and molecular mechanisms of memory: the LTP connection. Current Opinion in Genetics and Development, 1999, 9, 333-337.	3.3	38
41	The search for a hippocampal engram. Philosophical Transactions of the Royal Society B: Biological Sciences, 2014, 369, 20130161.	4.0	38
42	Memory Retrieval in Mice and Men. Cold Spring Harbor Perspectives in Biology, 2015, 7, a021790.	5.5	36
43	Exploring Memory Representations with Activity-Based Genetics. Cold Spring Harbor Perspectives in Biology, 2016, 8, a021832.	5.5	34
44	A mutant mouse with a highly specific contextual fear-conditioning deficit found in an N-ethyl-N-nitrosourea (ENU) mutagenesis screen. Learning and Memory, 2006, 13, 143-149.	1.3	33
45	An RNAi-based genetic screen for oxidative stress resistance reveals retinol saturase as a mediator of stress resistance. Free Radical Biology and Medicine, 2007, 43, 781-788.	2.9	30
46	Protein kinase signaling in synaptic plasticity and memory. Current Opinion in Neurobiology, 2007, 17, 313-317.	4.2	29
47	The influence of Pavlovian cues on instrumental performance is mediated by CaMKII activity in the striatum. European Journal of Neuroscience, 2007, 25, 2491-2497.	2.6	28
48	Differential fear conditioning generates prefrontal neural ensembles of safety signals. Behavioural Brain Research, 2019, 360, 169-184.	2.2	26
49	The effect of autonomous alpha-CaMKII expression on sensory responses and experience-dependent plasticity in mouse barrel cortex. Neuropharmacology, 2001, 41, 771-778.	4.1	20
50	Olfactory based spatial learning in neonatal mice and its dependence on CaMKII. NeuroReport, 2000, 11, 1051-1055.	1.2	19
51	A transgenic mouse line for collecting ribosome-bound mRNA using the tetracycline transactivator system. Frontiers in Molecular Neuroscience, 2014, 7, 82.	2.9	14
52	New approaches to neural circuits in behavior. Learning and Memory, 2012, 19, 385-390.	1.3	12
53	Chronic fluoxetine dissociates contextual from auditory fear memory. Neuroscience Letters, 2016, 632, 152-156.	2.1	8
54	A Comparative Analysis of the Molecular Mechanisms Contributing to Implicit and Explicit Memory		4

A Comparative Analysis of the Molecular Mechanisms Contributing to Implicit and Explicit Memory Storage in Aplysia and in the Hippocampus \hat{a} ⁺, 2017, 5-31.

#	Article	IF	CITATIONS
55	Navigating uncertain waters. Nature Neuroscience, 2012, 15, 1056-1057.	14.8	2
56	Compulsive Alcohol Seeking and Relapse: Central Role of Conditioning Factors Associated with Alleviation of Withdrawal States by Alcohol. British Journal of Pharmacology, 2022, , .	5.4	2
57	Chapter 3.1.4 Regulated temporal and spatial expression of mutants of CaMKII and calcineurin with the tetracycline-controlled transactivator (tTA) and reverse tTA (rtTA) systems. Handbook of Behavioral Neuroscience, 1999, 13, 291-304.	0.0	1
58	Ca2+/calmodulin-dependent protein kinase and neuronal function. , 0, , 149-177.		0