Sarah J Wolff

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6702923/publications.pdf

Version: 2024-02-01

		471061	476904
30	1,228	17	29
papers	citations	h-index	g-index
30	30	30	1015
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Synchronized in situ X-ray and infrared imaging of laser deposition. Manufacturing Letters, 2022, 31, 87-90.	1.1	2
2	In situ X-ray and thermal imaging of refractory high entropy alloying during laser directed deposition. Journal of Materials Processing Technology, 2022, 299, 117363.	3.1	13
3	In situ high-speed synchrotron X-ray imaging of laser-based directed energy deposition of the alloying process with dissimilar powders. Journal of Manufacturing Processes, 2022, 75, 1003-1011.	2.8	10
4	Convolutional Neural Network applications in additive manufacturing: A review. Advances in Industrial and Manufacturing Engineering, 2022, 4, 100072.	1,2	15
5	In situ X-ray imaging of directed energy deposition of metals: The comparisons of delivery performance between spherical and irregular powders. Journal of Manufacturing Processes, 2022, 79, 11-18.	2.8	1
6	Investigation of pore formation mechanisms induced by spherical-powder delivery in directed energy deposition using in situ high-speed X-ray imaging. Additive Manufacturing Letters, 2022, 3, 100050.	0.9	5
7	Powder-borne porosity in directed energy deposition. Journal of Manufacturing Processes, 2022, 80, 69-74.	2.8	6
8	In Situ Analysis of Laser Powder Bed Fusion Using Simultaneous High-Speed Infrared and X-ray Imaging. Jom, 2021, 73, 201-211.	0.9	51
9	In-situ Observations of Directed Energy Deposition Additive Manufacturing Using High-Speed X-ray Imaging. Jom, 2021, 73, 189-200.	0.9	40
10	High-speed synchrotron X-ray imaging of directed energy deposition of titanium: effects of processing parameters on the formation of entrapped-gas pores. Procedia Manufacturing, 2021, 53, 148-154.	1.9	3
11	Eco-friendly additive manufacturing of metals: Energy efficiency and life cycle analysis. Journal of Manufacturing Systems, 2021, 60, 459-472.	7.6	67
12	In situ X-ray imaging of pore formation mechanisms and dynamics in laser powder-blown directed energy deposition additive manufacturing. International Journal of Machine Tools and Manufacture, 2021, 166, 103743.	6.2	58
13	A VIBRATION-ASSISTED POWDER DELIVERY SYSTEM FOR ADDITIVE MANUFACTURING - An experimental investigation Additive Manufacturing, 2020, 34, 101170.	1.7	6
14	Correlations between thermal history and keyhole porosity in laser powder bed fusion. Additive Manufacturing, 2020, 34, 101213.	1.7	28
15	Preliminary Study on the Influence of an External Magnetic Field on Melt Pool Behavior in Laser Melting of 4140 Steel Using In-Situ X-Ray Imaging. Journal of Micro and Nano-Manufacturing, 2020, 8, .	0.8	6
16	Data-Driven Microstructure and Microhardness Design in Additive Manufacturing Using a Self-Organizing Map. Engineering, 2019, 5, 730-735.	3.2	40
17	Porosity Formation and Meltpool Geometry Analysis Using High-speed, <i>in situ</i> Imaging of Directed Energy Deposition. Microscopy and Microanalysis, 2019, 25, 2556-2557.	0.2	13
18	In-situ high-speed X-ray imaging of piezo-driven directed energy deposition additive manufacturing. Scientific Reports, 2019, 9, 962.	1.6	96

#	Article	lF	CITATIONS
19	Experimentally validated predictions of thermal history and microhardness in laser-deposited Inconel 718 on carbon steel. Additive Manufacturing, 2019, 27, 540-551.	1.7	64
20	High-speed Synchrotron X-ray Imaging of Laser Powder Bed Fusion Process. Synchrotron Radiation News, 2019, 32, 4-8.	0.2	17
21	Modeling process-structure-property relationships for additive manufacturing. Frontiers of Mechanical Engineering, 2018, 13, 482-492.	2.5	64
22	Data-driven multi-scale multi-physics models to derive process–structure–property relationships for additive manufacturing. Computational Mechanics, 2018, 61, 521-541.	2.2	162
23	Cooling rate effect on tensile strength of laser deposited Inconel 718. Procedia Manufacturing, 2018, 26, 912-919.	1.9	18
24	Data-driven prediction of the high-dimensional thermal history in directed energy deposition processes via recurrent neural networks. Manufacturing Letters, 2018, 18, 35-39.	1.1	110
25	A framework to link localized cooling and properties of directed energy deposition (DED)-processed Ti-6Al-4V. Acta Materialia, 2017, 132, 106-117.	3.8	119
26	Thermal effect on clad dimension for laser deposited Inconel 718. Journal of Manufacturing Processes, 2017, 28, 550-557.	2.8	46
27	Anisotropic properties of directed energy deposition (DED)-processed Ti–6Al–4V. Journal of Manufacturing Processes, 2016, 24, 397-405.	2.8	104
28	Unidirectional magnetic field assisted Laser Induced Plasma Micro-Machining. Manufacturing Letters, 2015, 3, 1-4.	1.1	35
29	An information classification system for life cycle and manufacturing standards. , 2014, , .		0
30	A preliminary study on the effect of external magnetic fields on Laser-Induced Plasma Micromachining (LIPMM). Manufacturing Letters, 2014, 2, 54-59.	1,1	29