Shannon S Stahl

List of Publications by Citations

Source: https://exaly.com/author-pdf/6702636/shannon-s-stahl-publications-by-citations.pdf

Version: 2024-04-17

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

288 96 170 30,475 h-index g-index citations papers 8.06 33,827 13.2 313 avg, IF L-index ext. citations ext. papers

#	Paper	IF	Citations
288	Palladium oxidase catalysis: selective oxidation of organic chemicals by direct dioxygen-coupled turnover. <i>Angewandte Chemie - International Edition</i> , 2004 , 43, 3400-20	16.4	1230
287	Copper-catalyzed aerobic oxidative C-H functionalizations: trends and mechanistic insights. <i>Angewandte Chemie - International Edition</i> , 2011 , 50, 11062-87	16.4	1118
286	Palladium(II)-catalyzed alkene functionalization via nucleopalladation: stereochemical pathways and enantioselective catalytic applications. <i>Chemical Reviews</i> , 2011 , 111, 2981-3019	68.1	1003
285	Formic-acid-induced depolymerization of oxidized lignin to aromatics. <i>Nature</i> , 2014 , 515, 249-52	50.4	78o
284	Overcoming the "oxidant problem": strategies to use O2 as the oxidant in organometallic C-H oxidation reactions catalyzed by Pd (and Cu). <i>Accounts of Chemical Research</i> , 2012 , 45, 851-63	24.3	657
283	Electrochemical water oxidation with cobalt-based electrocatalysts from pH 0-14: the thermodynamic basis for catalyst structure, stability, and activity. <i>Journal of the American Chemical Society</i> , 2011 , 133, 14431-42	16.4	592
282	Highly practical copper(I)/TEMPO catalyst system for chemoselective aerobic oxidation of primary alcohols. <i>Journal of the American Chemical Society</i> , 2011 , 133, 16901-10	16.4	561
281	Operando Analysis of NiFe and Fe Oxyhydroxide Electrocatalysts for Water Oxidation: Detection of Fe by MBsbauer Spectroscopy. <i>Journal of the American Chemical Society</i> , 2015 , 137, 15090-3	16.4	508
280	Homogeneous Oxidation of Alkanes by Electrophilic Late Transition Metals. <i>Angewandte Chemie - International Edition</i> , 1998 , 37, 2180-2192	16.4	507
279	Chemoselective metal-free aerobic alcohol oxidation in lignin. <i>Journal of the American Chemical Society</i> , 2013 , 135, 6415-8	16.4	460
278	Chemistry. Palladium-catalyzed oxidation of organic chemicals with O2. <i>Science</i> , 2005 , 309, 1824-6	33.3	452
277	Copper-catalyzed aerobic oxidative amidation of terminal alkynes: efficient synthesis of ynamides. <i>Journal of the American Chemical Society</i> , 2008 , 130, 833-5	16.4	421
276	Tetramethylpiperidine N-Oxyl (TEMPO), Phthalimide N-Oxyl (PINO), and Related N-Oxyl Species: Electrochemical Properties and Their Use in Electrocatalytic Reactions. <i>Chemical Reviews</i> , 2018 , 118, 4834-4885	68.1	419
275	Practical aerobic oxidations of alcohols and amines with homogeneous copper/TEMPO and related catalyst systems. <i>Angewandte Chemie - International Edition</i> , 2014 , 53, 8824-38	16.4	395
274	Copper-catalyzed aerobic oxidative functionalization of an arene C-H bond: evidence for an aryl-copper(III) intermediate. <i>Journal of the American Chemical Society</i> , 2010 , 132, 12068-73	16.4	394
273	Mechanism of copper(I)/TEMPO-catalyzed aerobic alcohol oxidation. <i>Journal of the American Chemical Society</i> , 2013 , 135, 2357-67	16.4	393
272	Highly regioselective Pd-catalyzed intermolecular aminoacetoxylation of alkenes and evidence for cis-aminopalladation and S(N)2 C-O bond formation. <i>Journal of the American Chemical Society</i> , 2006 , 128, 7179-81	16.4	374

(2015-2007)

271	Mimicry of antimicrobial host-defense peptides by random copolymers. <i>Journal of the American Chemical Society</i> , 2007 , 129, 15474-6	16.4	361
270	Divergence between organometallic and single-electron-transfer mechanisms in copper(II)-mediated aerobic C-H oxidation. <i>Journal of the American Chemical Society</i> , 2013 , 135, 9797-80	4 ^{6.4}	357
269	Copper-Catalyzed Aerobic Oxidations of Organic Molecules: Pathways for Two-Electron Oxidation with a Four-Electron Oxidant and a One-Electron Redox-Active Catalyst. <i>Accounts of Chemical Research</i> , 2015 , 48, 1756-66	24.3	351
268	Enantioselective cyanation of benzylic C-H bonds via copper-catalyzed radical relay. <i>Science</i> , 2016 , 353, 1014-1018	33.3	347
267	Palladium-catalyzed aerobic dehydrogenation of substituted cyclohexanones to phenols. <i>Science</i> , 2011 , 333, 209-13	33.3	344
266	Palladiumoxidasekatalyse: selektive Oxidation durch direkte disauerstoffgekoppelte Umsetzung. <i>Angewandte Chemie</i> , 2004 , 116, 3480-3501	3.6	337
265	Ligand-Promoted Palladium-Catalyzed Aerobic Oxidation Reactions. <i>Chemical Reviews</i> , 2018 , 118, 2636-	2687 9	330
264	Carbon-nitrogen bond formation involving well-defined aryl-copper(III) complexes. <i>Journal of the American Chemical Society</i> , 2008 , 130, 9196-7	16.4	325
263	Mechanistic study of copper-catalyzed aerobic oxidative coupling of arylboronic esters and methanol: insights into an organometallic oxidase reaction. <i>Journal of the American Chemical Society</i> , 2009 , 131, 5044-5	16.4	309
262	Kupferkatalysierte aerobe oxidative C-H-Funktionalisierungen: Trends und Erkenntnisse zum Mechanismus. <i>Angewandte Chemie</i> , 2011 , 123, 11256-11283	3.6	291
261	Mechanistic study of alcohol oxidation by the Pd(OAc)(2)/O(2)/DMSO catalyst system and implications for the development of improved aerobic oxidation catalysts. <i>Journal of the American Chemical Society</i> , 2002 , 124, 766-7	16.4	283
260	Synthesis of cyclic enones via direct palladium-catalyzed aerobic dehydrogenation of ketones. Journal of the American Chemical Society, 2011 , 133, 14566-9	16.4	280
259	Cooperative electrocatalytic alcohol oxidation with electron-proton-transfer mediators. <i>Nature</i> , 2016 , 535, 406-10	50.4	276
258	Palladium-catalyzed aerobic oxidative amination of alkenes: development of intra- and intermolecular aza-Wacker reactions. <i>Inorganic Chemistry</i> , 2007 , 46, 1910-23	5.1	270
257	Exploring the Mechanism of Aqueous CH Activation by Pt(II) through Model Chemistry: Evidence for the Intermediacy of Alkylhydridoplatinum(IV) and Alkane EAdducts. <i>Journal of the American Chemical Society</i> , 1996 , 118, 5961-5976	16.4	262
256	Copper(I)/ABNO-catalyzed aerobic alcohol oxidation: alleviating steric and electronic constraints of Cu/TEMPO catalyst systems. <i>Journal of the American Chemical Society</i> , 2013 , 135, 15742-5	16.4	259
255	Oxygenation of nitrogen-coordinated palladium(0): synthetic, structural, and mechanistic studies and implications for aerobic oxidation catalysis. <i>Journal of the American Chemical Society</i> , 2001 , 123, 718	3 <u>6</u> 94	248
254	Quinone-Catalyzed Selective Oxidation of Organic Molecules. <i>Angewandte Chemie - International Edition</i> , 2015 , 54, 14638-58	16.4	231

253	Allylic C-H acetoxylation with a 4,5-diazafluorenone-ligated palladium catalyst: a ligand-based strategy to achieve aerobic catalytic turnover. <i>Journal of the American Chemical Society</i> , 2010 , 132, 1511	<u>164</u>	228
252	Direct observation of CuI/CuIII redox steps relevant to Ullmann-type coupling reactions. <i>Chemical Science</i> , 2010 , 1, 326	9.4	226
251	Mechanistic Studies of the Reaction of Reduced Methane Monooxygenase Hydroxylase with Dioxygen and Substrates. <i>Journal of the American Chemical Society</i> , 1999 , 121, 3876-3887	16.4	219
250	Aerobic oxidative amination of unactivated alkenes catalyzed by palladium. <i>Journal of the American Chemical Society</i> , 2005 , 127, 2868-9	16.4	206
249	Mechanism of Pd(OAc)2/DMSO-catalyzed aerobic alcohol oxidation: mass-transfer-limitation effects and catalyst decomposition pathways. <i>Journal of the American Chemical Society</i> , 2006 , 128, 4348-	<u>164</u> -554	204
248	Two-faced reactivity of alkenes: cis- versus trans-aminopalladation in aerobic Pd-catalyzed intramolecular aza-Wacker reactions. <i>Journal of the American Chemical Society</i> , 2007 , 129, 6328-35	16.4	202
247	Structure-activity relationships among random nylon-3 copolymers that mimic antibacterial host-defense peptides. <i>Journal of the American Chemical Society</i> , 2009 , 131, 9735-45	16.4	194
246	Characterization of peroxo and hydroperoxo intermediates in the aerobic oxidation of N-heterocyclic-carbene-coordinated palladium(0). <i>Journal of the American Chemical Society</i> , 2004 , 126, 10212-3	16.4	186
245	Mechanistic characterization of aerobic alcohol oxidation catalyzed by Pd(OAc)(2)/pyridine including identification of the catalyst resting state and the origin of nonlinear [catalyst] dependence. <i>Journal of the American Chemical Society</i> , 2004 , 126, 11268-78	16.4	184
244	Ligand-modulated palladium oxidation catalysis: mechanistic insights into aerobic alcohol oxidation with the Pd(OAc)(2)/pyridine catalyst system. <i>Organic Letters</i> , 2002 , 4, 4179-81	6.2	180
243	A survey of diverse earth abundant oxygen evolution electrocatalysts showing enhanced activity from NiBe oxides containing a third metal. <i>Energy and Environmental Science</i> , 2014 , 7, 2376-2382	35.4	178
242	Catalytic transamidation under moderate conditions. <i>Journal of the American Chemical Society</i> , 2003 , 125, 3422-3	16.4	172
241	Copper/TEMPO-Catalyzed Aerobic Alcohol Oxidation: Mechanistic Assessment of Different Catalyst Systems. <i>ACS Catalysis</i> , 2013 , 3, 2599-2605	13.1	169
240	Electrochemical Oxidation of Organic Molecules at Lower Overpotential: Accessing Broader Functional Group Compatibility with Electron-Proton Transfer Mediators. <i>Accounts of Chemical Research</i> , 2020 , 53, 561-574	24.3	159
239	Bioinspired aerobic oxidation of secondary amines and nitrogen heterocycles with a bifunctional quinone catalyst. <i>Journal of the American Chemical Society</i> , 2014 , 136, 506-12	16.4	158
238	Aerobic dehydrogenation of cyclohexanone to phenol catalyzed by Pd(TFA)2/2-dimethylaminopyridine: evidence for the role of Pd nanoparticles. <i>Journal of the American Chemical Society</i> , 2013 , 135, 8213-21	16.4	157
237	Reaction of molecular oxygen with a Pd(II)-hydride to produce a Pd(II)-hydroperoxide: experimental evidence for an HX-reductive-elimination pathway. <i>Journal of the American Chemical Society</i> , 2008 , 130, 5753-62	16.4	154
236	Regioselective copper-catalyzed chlorination and bromination of arenes with O(2) as the oxidant. <i>Chemical Communications</i> , 2009 , 6460-2	5.8	153

(2011-2009)

235	Catalytic transamidation reactions compatible with tertiary amide metathesis under ambient conditions. <i>Journal of the American Chemical Society</i> , 2009 , 131, 10003-8	16.4	151	
234	Dual mechanism of bacterial lethality for a cationic sequence-random copolymer that mimics host-defense antimicrobial peptides. <i>Journal of Molecular Biology</i> , 2008 , 379, 38-50	6.5	150	
233	Efficient intramolecular oxidative amination of olefins through direct dioxygen-coupled palladium catalysis. <i>Angewandte Chemie - International Edition</i> , 2002 , 41, 164-6	16.4	150	
232	Mechanism of alcohol oxidation mediated by copper(II) and nitroxyl radicals. <i>Journal of the American Chemical Society</i> , 2014 , 136, 12166-73	16.4	146	
231	Aerobic dehydrogenation of cyclohexanone to cyclohexenone catalyzed by Pd(DMSO)2(TFA)2: evidence for ligand-controlled chemoselectivity. <i>Journal of the American Chemical Society</i> , 2013 , 135, 8205-12	16.4	146	
230	Inverse spinel NiFeAlO4 as a highly active oxygen evolution electrocatalyst: promotion of activity by a redox-inert metal ion. <i>Energy and Environmental Science</i> , 2014 , 7, 1382	35.4	144	
229	Co/NHPI-mediated aerobic oxygenation of benzylic C-H bonds in pharmaceutically relevant molecules. <i>Chemical Science</i> , 2017 , 8, 1282-1287	9.4	144	
228	Electrocatalytic Alcohol Oxidation with TEMPO and Bicyclic Nitroxyl Derivatives: Driving Force Trumps Steric Effects. <i>Journal of the American Chemical Society</i> , 2015 , 137, 14751-7	16.4	143	
227	Reaction of molecular oxygen with a PdII- hydride to produce a PdII-hydroperoxide: acid catalysis and implications for Pd-catalyzed aerobic oxidation reactions. <i>Angewandte Chemie - International Edition</i> , 2006 , 45, 2904-7	16.4	142	
226	Experimental Limiting Oxygen Concentrations for Nine Organic Solvents at Temperatures and Pressures Relevant to Aerobic Oxidations in the Pharmaceutical Industry. <i>Organic Process Research and Development</i> , 2015 , 19, 1537-1543	3.9	139	
225	Cu/Nitroxyl Catalyzed Aerobic Oxidation of Primary Amines into Nitriles at Room Temperature. <i>ACS Catalysis</i> , 2013 , 3, 1652-1656	13.1	138	
224	Modular o-quinone catalyst system for dehydrogenation of tetrahydroquinolines under ambient conditions. <i>Journal of the American Chemical Society</i> , 2014 , 136, 11910-3	16.4	137	
223	Direct Aerobic ⊞Dehydrogenation of Aldehydes and Ketones with a Pd(TFA)(2)/4,5-Diazafluorenone Catalyst(). <i>Chemical Science</i> , 2012 , 3, 887-891	9.4	137	
222	Copper(I)/TEMPO-catalyzed aerobic oxidation of primary alcohols to aldehydes with ambient air. <i>Nature Protocols</i> , 2012 , 7, 1161-6	18.8	136	
221	Development of Safe and Scalable Continuous-Flow Methods for Palladium-Catalyzed Aerobic Oxidation Reactions. <i>Green Chemistry</i> , 2010 , 12, 1180-1186	10	136	
220	Aerobic intramolecular oxidative amination of alkenes catalyzed by NHC-coordinated palladium complexes. <i>Organic Letters</i> , 2006 , 8, 2257-60	6.2	130	
219	Dioxygen-coupled oxidative amination of styrene. <i>Journal of the American Chemical Society</i> , 2003 , 125, 12996-7	16.4	130	
218	Regiocontrolled aerobic oxidative coupling of indoles and benzene using Pd catalysts with 4,5-diazafluorene ligands. <i>Chemical Communications</i> , 2011 , 47, 10257-9	5.8	127	

217	"Inverse-electron-demand" ligand substitution in palladium(0)-olefin complexes. <i>Journal of the American Chemical Society</i> , 2003 , 125, 12-3	16.4	127
216	The "Best Catalyst" for Water Oxidation Depends on the Oxidation Method Employed: A Case Study of Manganese Oxides. <i>Journal of the American Chemical Society</i> , 2015 , 137, 8384-7	16.4	126
215	Chemoselective organocatalytic aerobic oxidation of primary amines to secondary imines. <i>Organic Letters</i> , 2012 , 14, 2850-3	6.2	126
214	Quinone 1 e and 2 e/2 H Reduction Potentials: Identification and Analysis of Deviations from Systematic Scaling Relationships. <i>Journal of the American Chemical Society</i> , 2016 , 138, 15903-15910	16.4	124
213	Cobalt analogs of Ru-based water oxidation catalysts: overcoming thermodynamic instability and kinetic lability to achieve electrocatalytic O2 evolution. <i>Chemical Science</i> , 2012 , 3, 3058	9.4	123
212	Aerobic oxidative Heck/dehydrogenation reactions of cyclohexenones: efficient access to meta-substituted phenols. <i>Angewandte Chemie - International Edition</i> , 2013 , 52, 3672-5	16.4	121
211	Insertion of molecular oxygen into a palladium-hydride bond: computational evidence for two nearly isoenergetic pathways. <i>Journal of the American Chemical Society</i> , 2007 , 129, 4410-22	16.4	121
210	Catalyst-controlled regioselectivity in the synthesis of branched conjugated dienes via aerobic oxidative Heck reactions. <i>Journal of the American Chemical Society</i> , 2012 , 134, 16496-9	16.4	120
209	Formation and Reductive Elimination of a Hydridoalkylplatinum(IV) Intermediate upon Protonolysis of an Alkylplatinum(II) Complex. <i>Journal of the American Chemical Society</i> , 1995 , 117, 9371-9372	16.4	120
208	Characterization of NiFe oxyhydroxide electrocatalysts by integrated electronic structure calculations and spectroelectrochemistry. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2017 , 114, 3050-3055	11.5	119
207	Enantioselective hydroformylation of N-vinyl carboxamides, allyl carbamates, and allyl ethers using chiral diazaphospholane ligands. <i>Journal of the American Chemical Society</i> , 2010 , 132, 14027-9	16.4	119
206	Observation and mechanistic study of facile C-O bond formation between a well-defined aryl-copper(III) complex and oxygen nucleophiles. <i>Chemistry - A European Journal</i> , 2011 , 17, 10643-50	4.8	113
205	Unexpected roles of molecular sieves in palladium-catalyzed aerobic alcohol oxidation. <i>Journal of Organic Chemistry</i> , 2006 , 71, 1861-8	4.2	113
204	Merging Photochemistry with Electrochemistry: Functional-Group Tolerant Electrochemical Amination of C(sp)-H Bonds. <i>Angewandte Chemie - International Edition</i> , 2019 , 58, 6385-6390	16.4	111
203	N-Hydroxyphthalimide-Mediated Electrochemical Iodination of Methylarenes and Comparison to Electron-Transfer-Initiated C-H Functionalization. <i>Journal of the American Chemical Society</i> , 2018 , 140, 22-25	16.4	110
202	Mechanistic study of asymmetric oxidative biaryl coupling: evidence for self-processing of the copper catalyst to achieve control of oxidase vs oxygenase activity. <i>Journal of the American Chemical Society</i> , 2008 , 130, 12232-3	16.4	109
201	Efficient Aerobic Oxidation of Secondary Alcohols at Ambient Temperature with an ABNO/NOx Catalyst System. <i>ACS Catalysis</i> , 2013 , 3, 2612-2616	13.1	108
200	Pd-catalyzed Semmler-Wolff reactions for the conversion of substituted cyclohexenone oximes to primary anilines. <i>Journal of the American Chemical Society</i> , 2013 , 135, 13664-7	16.4	106

(2010-2005)

199	Brlisted base-modulated regioselectivity in the aerobic oxidative amination of styrene catalyzed by palladium. <i>Journal of the American Chemical Society</i> , 2005 , 127, 17888-93	16.4	106
198	Catalytic Aerobic Dehydrogenation of Nitrogen Heterocycles Using Heterogeneous Cobalt Oxide Supported on Nitrogen-Doped Carbon. <i>Organic Letters</i> , 2015 , 17, 4404-7	6.2	105
197	Insights into the spin-forbidden reaction between L2Pd0 and molecular oxygen. <i>Journal of the American Chemical Society</i> , 2004 , 126, 16302-3	16.4	102
196	Efficient and selective Cu/nitroxyl-catalyzed methods for aerobic oxidative lactonization of diols. Journal of the American Chemical Society, 2015 , 137, 3767-70	16.4	101
195	Palladium-Catalyzed Aerobic Dehydrogenation of Cyclic Hydrocarbons for the Synthesis of Substituted Aromatics and Other Unsaturated Products. <i>ACS Catalysis</i> , 2016 , 6, 8201-8213	13.1	101
194	PdII complexes possessing a seven-membered N-heterocyclic carbene ligand. <i>Angewandte Chemie - International Edition</i> , 2005 , 44, 5269-72	16.4	99
193	Lignin Conversion to Low-Molecular-Weight Aromatics via an Aerobic Oxidation-Hydrolysis Sequence: Comparison of Different Lignin Sources. <i>ACS Sustainable Chemistry and Engineering</i> , 2018 , 6, 3367-3374	8.3	97
192	Synthesis of pyrrolidines via palladium(II)-catalyzed aerobic oxidative carboamination of butyl vinyl ether and styrenes with allyl tosylamides. <i>Organic Letters</i> , 2006 , 8, 3251-4	6.2	95
191	Kinetic and Spectroscopic Studies of Aerobic Copper(II)-Catalyzed Methoxylation of Arylboronic Esters and Insights into Aryl Transmetalation to Copper(II). <i>Organometallics</i> , 2012 , 31, 7948-7957	3.8	94
190	Discovery and mechanistic study of Al(III)-catalyzed transamidation of tertiary amides. <i>Journal of the American Chemical Society</i> , 2008 , 130, 647-54	16.4	94
189	Praktische aerobe Oxidationen von Alkoholen und Aminen mit dem homogenen Kupfer/TEMPO- und verwandten Katalysatorsystemen. <i>Angewandte Chemie</i> , 2014 , 126, 8968-8983	3.6	93
188	Aerobic Oxidative Coupling of o-Xylene: Discovery of 2-Fluoropyridine as a Ligand to Support Selective Pd-Catalyzed C-H Functionalization. <i>Advanced Synthesis and Catalysis</i> , 2010 , 352, 3223-3229	5.6	93
187	Characterization of DMSO coordination to palladium(II) in solution and insights into the aerobic oxidation catalyst, Pd(DMSO)2(TFA)2. <i>Inorganic Chemistry</i> , 2012 , 51, 11898-909	5.1	92
186	Mechanism of Pd(OAc)2/pyridine catalyst reoxidation by O2: influence of labile monodentate ligands and identification of a biomimetic mechanism for O2 activation. <i>Chemistry - A European Journal</i> , 2009 , 15, 2915-22	4.8	92
185	Formation of enamides via palladium(II)-catalyzed vinyl transfer from vinyl ethers to nitrogen nucleophiles. <i>Organic Letters</i> , 2004 , 6, 1845-8	6.2	92
184	Enantioselective Pd(II)-catalyzed aerobic oxidative amidation of alkenes and insights into the role of electronic asymmetry in pyridine-oxazoline ligands. <i>Organic Letters</i> , 2011 , 13, 2830-3	6.2	91
183	Feedstocks to Pharmacophores: Cu-Catalyzed Oxidative Arylation of Inexpensive Alkylarenes Enabling Direct Access to Diarylalkanes. <i>Journal of the American Chemical Society</i> , 2017 , 139, 7705-7708	16.4	89
182	Modular synthesis of 1,2-diamine derivatives by palladium-catalyzed aerobic oxidative cyclization of allylic sulfamides. <i>Angewandte Chemie - International Edition</i> , 2010 , 49, 5529-32	16.4	88

181	Co(salophen)-Catalyzed Aerobic Oxidation of p-Hydroquinone: Mechanism and Implications for Aerobic Oxidation Catalysis. <i>Journal of the American Chemical Society</i> , 2016 , 138, 4186-93	16.4	85
180	Continuous-Flow Aerobic Oxidation of Primary Alcohols with a Copper(I)/TEMPO Catalyst. <i>Organic Process Research and Development</i> , 2013 , 17, 1247-1251	3.9	84
179	Pd-catalyzed aerobic oxidative coupling of arenes: evidence for transmetalation between two Pd(II)-aryl intermediates. <i>Journal of the American Chemical Society</i> , 2014 , 136, 9914-7	16.4	83
178	Chinon-katalysierte, selektive Oxidation organischer Molekle. <i>Angewandte Chemie</i> , 2015 , 127, 14848-14	868	83
177	Synthesis of Pd Complexes Bearing an Enantiomerically-Resolved Seven-Membered N-Heterocyclic Carbene Ligands and Initial Studies of their Use in Asymmetric Wacker-Type Oxidative Cyclization Reactions. <i>Tetrahedron</i> , 2009 , 65, 5084-5092	2.4	81
176	Practical Synthesis of Amides via Copper/ABNO-Catalyzed Aerobic Oxidative Coupling of Alcohols and Amines. <i>Journal of the American Chemical Society</i> , 2016 , 138, 6416-9	16.4	81
175	Mechanism of Al(III)-catalyzed transamidation of unactivated secondary carboxamides. <i>Journal of the American Chemical Society</i> , 2006 , 128, 5177-83	16.4	8o
174	Electrochemical Aminoxyl-Mediated Ecyanation of Secondary Piperidines for Pharmaceutical Building Block Diversification. <i>Journal of the American Chemical Society</i> , 2018 , 140, 11227-11231	16.4	79
173	Noncovalent Immobilization of Molecular Electrocatalysts for Chemical Synthesis: Efficient Electrochemical Alcohol Oxidation with a Pyrene-TEMPO Conjugate. <i>Angewandte Chemie - International Edition</i> , 2017 , 56, 8892-8897	16.4	78
172	Development of 7-membered N-heterocyclic carbene ligands for transition metals. <i>Journal of Organometallic Chemistry</i> , 2005 , 690, 6143-6155	2.3	78
171	Intramolecular Pd(II)-catalyzed aerobic oxidative amination of alkenes: synthesis of six-membered N-heterocycles. <i>Organic Letters</i> , 2012 , 14, 1234-7	6.2	77
170	Reversible alkene insertion into the Pd-N bond of Pd(II)-sulfonamidates and implications for catalytic amidation reactions. <i>Journal of the American Chemical Society</i> , 2011 , 133, 18594-7	16.4	76
169	Reconciling the stereochemical course of nucleopalladation with the development of enantioselective wacker-type cyclizations. <i>Angewandte Chemie - International Edition</i> , 2012 , 51, 11505-9	16.4	74
168	Reaction of molecular oxygen with an NHC-coordinated Pd0 complex: computational insights and experimental implications. <i>Angewandte Chemie - International Edition</i> , 2007 , 46, 601-4	16.4	73
167	Palladium-Catalyzed Oxidation Reactions: Comparison of Benzoquinone and Molecular Oxygen as Stoichiometric Oxidants 2006 , 149-189		73
166	Mechanistic studies of Wacker-type intramolecular aerobic oxidative amination of alkenes catalyzed by Pd(OAc)2/pyridine. <i>Journal of Organic Chemistry</i> , 2011 , 76, 1031-44	4.2	72
165	High-Potential Electrocatalytic O2 Reduction with Nitroxyl/NO x Mediators: Implications for Fuel Cells and Aerobic Oxidation Catalysis. <i>ACS Central Science</i> , 2015 , 1, 234-43	16.8	71
164	Palladium-catalyzed oxidative amination of alkenes: improved catalyst reoxidation enables the use of alkene as the limiting reagent. <i>Organic Letters</i> , 2007 , 9, 4331-4	6.2	71

(2011-2018)

163	Electrochemical Functional-Group-Tolerant Shono-type Oxidation of Cyclic Carbamates Enabled by Aminoxyl Mediators. <i>Angewandte Chemie - International Edition</i> , 2018 , 57, 6686-6690	16.4	69
162	O2insertion into a palladium(II)-hydride bond: Observation of mechanistic crossover between HX-reductive-elimination and hydrogen-atom-abstraction pathways. <i>Chemical Science</i> , 2011 , 2, 326-330	9.4	69
161	Process Development of Cul/ABNO/NMI-Catalyzed Aerobic Alcohol Oxidation. <i>Organic Process Research and Development</i> , 2015 , 19, 1548-1553	3.9	68
160	Electrochemical Oxidation of Alcohols and Aldehydes to Carboxylic Acids Catalyzed by 4-Acetamido-TEMPO: An Alternative to Anelli and Pinnick Dxidations. ACS Catalysis, 2018, 8, 6738-6744	13.1	68
159	Molecular Cobalt Catalysts for O Reduction: Low-Overpotential Production of HO and Comparison with Iron-Based Catalysts. <i>Journal of the American Chemical Society</i> , 2017 , 139, 16458-16461	16.4	67
158	Palladium-catalyzed aerobic oxidative dehydrogenation of cyclohexenes to substituted arene derivatives. <i>Journal of the American Chemical Society</i> , 2015 , 137, 3454-7	16.4	62
157	Discovery of Multicomponent Heterogeneous Catalysts via Admixture Screening: PdBiTe Catalysts for Aerobic Oxidative Esterification of Primary Alcohols. <i>Journal of the American Chemical Society</i> , 2017 , 139, 1690-1698	16.4	60
156	Aerobic Alcohol Oxidation Using a Copper(I)/TEMPO Catalyst System: A Green, Catalytic Oxidation Reaction for the Undergraduate Organic Chemistry Laboratory. <i>Journal of Chemical Education</i> , 2013 , 90, 102-105	2.4	59
155	Palladium-catalyzed intermolecular aminoacetoxylation of alkenes and the influence of PhI(OAc)2 on aminopalladation stereoselectivity. <i>Journal of Organic Chemistry</i> , 2013 , 78, 6309-15	4.2	59
154	Electrochemical Aminoxyl-Mediated Oxidation of Primary Alcohols in Lignin to Carboxylic Acids: Polymer Modification and Depolymerization. <i>Journal of the American Chemical Society</i> , 2019 , 141, 15266	5 ⁻¹⁶ 547	6 ⁵⁸
153	Aerobic oxidation of diverse primary alcohols to methyl esters with a readily accessible heterogeneous Pd/Bi/Te catalyst. <i>Organic Letters</i> , 2013 , 15, 5072-5	6.2	58
152	Development of an O2-sensitive fluorescence-quenching assay for the combinatorial discovery of electrocatalysts for water oxidation. <i>Angewandte Chemie - International Edition</i> , 2012 , 51, 6676-80	16.4	57
151	Fluoride-modulated cobalt catalysts for electrochemical oxidation of water under non-alkaline conditions. <i>ChemSusChem</i> , 2010 , 3, 1176-9	8.3	56
150	Site-Selective Copper-Catalyzed Azidation of Benzylic C-H Bonds. <i>Journal of the American Chemical Society</i> , 2020 , 142, 11388-11393	16.4	55
149	Selective electrochemical generation of benzylic radicals enabled by ferrocene-based electron-transfer mediators. <i>Chemical Science</i> , 2018 , 9, 356-361	9.4	54
148	Copper-catalysed benzylic C-H coupling with alcohols via radical relay enabled by redox buffering. <i>Nature Catalysis</i> , 2020 , 3, 358-367	36.5	52
147	Copper(II)-mediated oxidative cyclization of enamides to oxazoles. <i>Organic and Biomolecular Chemistry</i> , 2012 , 10, 3866-70	3.9	52
146	Benzoquinone-promoted reaction of O2 with a Pd(II)-hydride. <i>Journal of the American Chemical Society</i> , 2011 , 133, 5732-5	16.4	52

145	Reaction of Molecular Oxygen with a PdIIIHydride To Produce a PdIIIHydroperoxide: Acid Catalysis and Implications for Pd-Catalyzed Aerobic Oxidation Reactions. <i>Angewandte Chemie</i> , 2006 , 118, 2970-20	973	51
144	Synthesis of vicinal aminoalcohols by stereoselective aza-Wacker cyclizations: access to (-)-acosamine by redox relay. <i>Angewandte Chemie - International Edition</i> , 2013 , 52, 11867-70	16.4	50
143	Titanium(IV)-Mediated Conversion of Carboxamides to Amidines and Implications for Catalytic Transamidation. <i>Organometallics</i> , 2005 , 24, 5208-5210	3.8	50
142	Detection of Palladium(I) in Aerobic Oxidation Catalysis. <i>Angewandte Chemie - International Edition</i> , 2017 , 56, 3605-3610	16.4	47
141	Reaction of O2 with [(-)-sparteine]Pd(H)Cl: evidence for an intramolecular [H-L]+ "reductive elimination" pathway. <i>Journal of the American Chemical Society</i> , 2011 , 133, 13268-71	16.4	47
140	Mediated Fuel Cells: Soluble Redox Mediators and Their Applications to Electrochemical Reduction of O and Oxidation of H, Alcohols, Biomass, and Complex Fuels. <i>Chemical Reviews</i> , 2020 , 120, 3749-3786	5 ^{68.1}	46
139	Synthesis and isolation of a stable, axially-chiral seven-membered N-heterocyclic carbene. <i>Dalton Transactions</i> , 2009 , 2284-6	4.3	46
138	Continuous Flow Aerobic Alcohol Oxidation Reactions Using a Heterogeneous Ru(OH) /AlO Catalyst. <i>Organic Process Research and Development</i> , 2014 , 18, 1503-1508	3.9	45
137	Mechanism of Copper/Azodicarboxylate-Catalyzed Aerobic Alcohol Oxidation: Evidence for Uncooperative Catalysis. <i>Journal of the American Chemical Society</i> , 2016 , 138, 199-206	16.4	44
136	Palladium Catalyzed Aryl C-H Amination with O via In Situ Formation of Peroxide-Based Oxidant(s) from Dioxane. <i>Catalysis Science and Technology</i> , 2014 , 4, 4301-4307	5.5	44
135	Diazafluorenone-Promoted Oxidation Catalysis: Insights into the Role of Bidentate Ligands in Pd-Catalyzed Aerobic Aza-Wacker Reactions. <i>ACS Catalysis</i> , 2016 , 6, 3340-3348	13.1	43
134	PTFE-Membrane Flow Reactor for Aerobic Oxidation Reactions and Its Application to Alcohol Oxidation. <i>Organic Process Research and Development</i> , 2015 , 19, 858-864	3.9	42
133	Aerobic Oxidation of Diverse Primary Alcohols to Carboxylic Acids with a Heterogeneous PdBille/C (PBT/C) Catalyst. <i>Organic Process Research and Development</i> , 2017 , 21, 1388-1393	3.9	42
132	Funneling aromatic products of chemically depolymerized lignin into 2-pyrone-4-6-dicarboxylic acid with Novosphingobium aromaticivorans. <i>Green Chemistry</i> , 2019 , 21, 1340-1350	10	42
131	Cooperative Electrocatalytic O Reduction Involving Co(salophen) with p-Hydroquinone as an Electron-Proton Transfer Mediator. <i>Journal of the American Chemical Society</i> , 2017 , 139, 18472-18475	16.4	40
130	Mechanistic analysis of trans C-N reductive elimination from a square-planar macrocyclic aryl-copper(III) complex. <i>Dalton Transactions</i> , 2011 , 40, 8959-63	4.3	40
129	Structural Effects on the pH-Dependent Redox Properties of Organic Nitroxyls: Pourbaix Diagrams for TEMPO, ABNO, and Three TEMPO Analogs. <i>Journal of Organic Chemistry</i> , 2018 , 83, 7323-7330	4.2	40
128	Pd-Catalyzed Aerobic Oxidative Biaryl Coupling: Non-Redox Cocatalysis by Cu(OTf) and Discovery of Fe(OTf) as a Highly Effective Cocatalyst. <i>Journal of the American Chemical Society</i> , 2017 , 139, 5704-57	767.4	39

127	Merging Photochemistry with Electrochemistry: Functional-Group Tolerant Electrochemical Amination of C(sp3)⊞ Bonds. <i>Angewandte Chemie</i> , 2019 , 131, 6451-6456	3.6	39
126	Stereoselective synthesis of cis-2,5-disubstituted pyrrolidines via Wacker-type aerobic oxidative cyclization of alkenes with tert-butanesulfinamide nucleophiles. <i>Organic Letters</i> , 2012 , 14, 1242-5	6.2	39
125	Molecular mechanism of acid-triggered aryl-halide reductive elimination in well-defined aryl-Cu(III)-halide species. <i>Dalton Transactions</i> , 2010 , 39, 10458-63	4.3	39
124	"Inverse-electron-demand" ligand substitution: experimental and computational insights into olefin exchange at palladium(0). <i>Journal of the American Chemical Society</i> , 2004 , 126, 14832-42	16.4	39
123	Electronic Structural Analysis of Copper(II)-TEMPO/ABNO Complexes Provides Evidence for Copper(I)-Oxoammonium Character. <i>Journal of the American Chemical Society</i> , 2017 , 139, 13507-13517	16.4	38
122	Structurally Diverse Diazafluorene-Ligated Palladium(II) Complexes and Their Implications for Aerobic Oxidation Reactions. <i>Journal of the American Chemical Society</i> , 2016 , 138, 4869-80	16.4	37
121	Cu-Catalyzed Aerobic Oxidative N-N Coupling of Carbazoles and Diarylamines Including Selective Cross-Coupling. <i>Journal of the American Chemical Society</i> , 2018 , 140, 9074-9077	16.4	37
120	Stable TEMPO and ABNO Catalyst Solutions for User-Friendly (bpy)Cu/Nitroxyl-Catalyzed Aerobic Alcohol Oxidation. <i>Journal of Organic Chemistry</i> , 2015 , 80, 11184-8	4.2	36
119	Efficient Intramolecular Oxidative Amination of Olefins through Direct Dioxygen-Coupled Palladium Catalysis. <i>Angewandte Chemie</i> , 2002 , 114, 172-174	3.6	36
118	Synthesis of Indole-2-carboxylate Derivatives via Palladium-Catalyzed Aerobic Amination of Aryl C-H Bonds. <i>Organic Letters</i> , 2016 , 18, 3586-9	6.2	36
117	Aerobic Oxidative Heck/Dehydrogenation Reactions of Cyclohexenones: Efficient Access to meta-Substituted Phenols. <i>Angewandte Chemie</i> , 2013 , 125, 3760-3763	3.6	35
116	C(sp)-H methylation enabled by peroxide photosensitization and Ni-mediated radical coupling. <i>Science</i> , 2021 , 372, 398-403	33.3	35
115	Similarities between the reactions of dioxygen and alkenes with palladium(0): Relevance to the use of benzoquinone and molecular oxygen as stoichiometric oxidants in palladium-catalyzed oxidation reactions. <i>Journal of Molecular Catalysis A</i> , 2006 , 251, 2-7		34
114	Brfisted Acid Scaling Relationships Enable Control Over Product Selectivity from O Reduction with a Mononuclear Cobalt Porphyrin Catalyst. <i>ACS Central Science</i> , 2019 , 5, 1024-1034	16.8	32
113	Steric modulation of chiral biaryl diamines via Pd-catalyzed directed C-H arylation. <i>Journal of Organic Chemistry</i> , 2009 , 74, 2613-5	4.2	32
112	Second-Order Biomimicry: In Situ Oxidative Self-Processing Converts Copper(I)/Diamine Precursor into a Highly Active Aerobic Oxidation Catalyst. <i>ACS Central Science</i> , 2017 , 3, 314-321	16.8	31
111	Replacement of Stoichiometric DDQ with a Low Potential o-Quinone Catalyst Enabling Aerobic Dehydrogenation of Tertiary Indolines in Pharmaceutical Intermediates. <i>Organic Letters</i> , 2019 , 21, 1176-	-6 ₇ 281	31
110	Kinetic and Mechanistic Characterization of Low-Overpotential, HO-Selective Reduction of O Catalyzed by NO-Ligated Cobalt Complexes. <i>Journal of the American Chemical Society</i> , 2018 , 140, 10890-	-16 8 99) ³¹

109	Regioselective aerobic oxidative Heck reactions with electronically unbiased alkenes: efficient access to Halkyl vinylarenes. <i>Chemical Communications</i> , 2015 , 51, 12771-4	5.8	30
108	Palladium-Catalyzed Aerobic Acetoxylation of Benzene using NO-Based Redox Mediators. <i>Journal of Organometallic Chemistry</i> , 2015 , 52, 97-102	2.3	29
107	Modular Synthesis of 1,2-Diamine Derivatives via Palladium-Catalyzed Aerobic Oxidative Cyclization of Allylic Sulfamides. <i>Angewandte Chemie</i> , 2010 , 122, 5661-5664	3.6	29
106	Electrochemical C-H oxygenation and alcohol dehydrogenation involving Fe-oxo species using water as the oxygen source. <i>Chemical Science</i> , 2019 , 10, 7542-7548	9.4	28
105	Noncovalent Immobilization of Molecular Electrocatalysts for Chemical Synthesis: Efficient Electrochemical Alcohol Oxidation with a Pyrenell EMPO Conjugate. <i>Angewandte Chemie</i> , 2017 , 129, 9018-9023	3.6	27
104	Electrochemical Strategy for Hydrazine Synthesis: Development and Overpotential Analysis of Methods for Oxidative N-N Coupling of an Ammonia Surrogate. <i>Journal of the American Chemical Society</i> , 2020 , 142, 12349-12356	16.4	27
103	Electrochemical Functional-Group-Tolerant Shono-type Oxidation of Cyclic Carbamates Enabled by Aminoxyl Mediators. <i>Angewandte Chemie</i> , 2018 , 130, 6796-6800	3.6	27
102	Platinum-Based Heterogeneous Catalysts for Nitrile Synthesis via Aerobic Oxidative Coupling of Alcohols and Ammonia. <i>ACS Omega</i> , 2018 , 3, 6091-6096	3.9	27
101	Copper-Catalyzed C-H Fluorination/Functionalization Sequence Enabling Benzylic C-H Cross Coupling with Diverse Nucleophiles. <i>Organic Letters</i> , 2020 , 22, 5753-5757	6.2	25
100	Quinone-Mediated Electrochemical O2 Reduction Accessing High Power Density with an Off-Electrode Co-N/C Catalyst. <i>Joule</i> , 2018 , 2, 2722-2731	27.8	24
99	Operando Spectroscopic and Kinetic Characterization of Aerobic Allylic C-H Acetoxylation Catalyzed by Pd(OAc)/4,5-Diazafluoren-9-one. <i>Journal of the American Chemical Society</i> , 2019 , 141, 104	162-1 6 4	17 2 3
98	O-Promoted Allylic Acetoxylation of Alkenes: Assessment of "Push" vs. "Pull" Mechanisms and Comparison between O and Benzoquinone. <i>Polyhedron</i> , 2014 , 84, 96-102	2.7	23
97	Mechanistic Basis for Efficient, Site-Selective, Aerobic Catalytic Turnover in Pd-Catalyzed C-H Imidoylation of Heterocycle-Containing Molecules. <i>Journal of the American Chemical Society</i> , 2017 , 139, 14533-14541	16.4	23
96	Electronic structural comparison of the reactions of dioxygen and alkenes with nitrogen-chelated palladium(0). <i>Inorganic Chemistry</i> , 2010 , 49, 8200-7	5.1	23
95	KetoABNO/NOx Cocatalytic Aerobic Oxidation of Aldehydes to Carboxylic Acids and Access to Echiral Carboxylic Acids via Sequential Asymmetric Hydroformylation/Oxidation. <i>Organic Letters</i> , 2016 , 18, 3590-3	6.2	22
94	"Oxidatively induced" reductive elimination of dioxygen from an eta2-peroxopalladium(II) complex promoted by electron-deficient alkenes. <i>Journal of the American Chemical Society</i> , 2006 , 128, 2804-5	16.4	21
93	Molecular Cobalt Catalysts for O2 Reduction to H2O2: Benchmarking Catalyst Performance via Rate®verpotential Correlations. <i>ACS Catalysis</i> , 2020 , 10, 12031-12039	13.1	21
92	Mechanistic Study of Diaryl Ether Bond Cleavage during Palladium-Catalyzed Lignin Hydrogenolysis. <i>ChemSusChem</i> , 2020 , 13, 4487-4494	8.3	20

91	Mechanistic studies of Wacker-type amidocyclization of alkenes catalyzed by (IMes)Pd(TFA)2(H2O): kinetic and stereochemical implications of proton transfer. <i>Journal of Organic Chemistry</i> , 2013 , 78, 208	3- 90	20	
90	Reconciling the Stereochemical Course of Nucleopalladation with the Development of Enantioselective Wacker-Type Cyclizations. <i>Angewandte Chemie</i> , 2012 , 124, 11673-11677	3.6	20	
89	Kinetics of Anionic Ring-Opening Polymerization of Variously Substituted 且actams: Homopolymerization and Copolymerization. <i>Macromolecules</i> , 2010 , 43, 5618-5626	5.5	20	
88	Integration of Anodic and Cathodic Catalysts of Earth-Abundant Materials for Efficient, Scalable CO2 Reduction. <i>Topics in Catalysis</i> , 2015 , 58, 57-66	2.3	19	
87	Synthesis of Vicinal Aminoalcohols by Stereoselective Aza-Wacker Cyclizations: Access to (PAcosamine by Redox Relay. <i>Angewandte Chemie</i> , 2013 , 125, 12083-12086	3.6	19	
86	Catalytic metathesis of simple secondary amides. <i>Angewandte Chemie - International Edition</i> , 2007 , 46, 761-3	16.4	18	
85	Mechanistic insights into copper-catalyzed aerobic oxidative coupling of N-N bonds. <i>Chemical Science</i> , 2019 , 11, 1170-1175	9.4	18	
84	Comparison of Quinone-Based Catholytes for Aqueous Redox Flow Batteries and Demonstration of Long-Term Stability with Tetrasubstituted Quinones. <i>Advanced Energy Materials</i> , 2020 , 10, 2000340	21.8	18	
83	Mechanistic Insights into Aerobic Oxidative Methyl Esterification of Primary Alcohols with Heterogeneous PdBiTe Catalysts. <i>ACS Catalysis</i> , 2018 , 8, 1038-1047	13.1	18	
82	PdII Complexes Possessing a Seven-Membered N-Heterocyclic Carbene Ligand. <i>Angewandte Chemie</i> , 2005 , 117, 5403-5406	3.6	17	
81	Copper-Catalyzed Functionalization of Benzylic C-H Bonds with -Fluorobenzenesulfonimide: Switch from C-N to C-F Bond Formation Promoted by a Redox Buffer and Brlisted Base. <i>Organic Letters</i> , 2020 , 22, 5749-5752	6.2	17	
80	Modular Electrochemical Synthesis Using a Redox Reservoir Paired with Independent Half-Reactions. <i>Joule</i> , 2021 , 5, 149-165	27.8	17	
79	Oxidative Amide Coupling from Functionally Diverse Alcohols and Amines Using Aerobic Copper/Nitroxyl Catalysis. <i>Angewandte Chemie - International Edition</i> , 2019 , 58, 12211-12215	16.4	16	
78	Speciation Behavior of Copper(II) Acetate in Simple Organic Solvents Revealing the Effect of Trace Water. <i>European Journal of Inorganic Chemistry</i> , 2014 , 2014, 1407-1412	2.3	16	
77	Tailored quinones support high-turnover Pd catalysts for oxidative C-H arylation with O. <i>Science</i> , 2020 , 370, 1454-1460	33.3	16	
76	Copper/TEMPO Redox Redux: Analysis of PCET Oxidation of TEMPOH by Copper(II) and the Reaction of TEMPO with Copper(I). <i>Inorganic Chemistry</i> , 2019 , 58, 10194-10200	5.1	15	
75	Integrated Two-Stage Alkaline-Oxidative Pretreatment of Hybrid Poplar. Part 1: Impact of Alkaline Pre-Extraction Conditions on Process Performance and Lignin Properties. <i>Industrial & Engineering Chemistry Research</i> , 2019 , 58, 15989-15999	3.9	14	
74	Aerobic Acyloxylation of Allylic C-H Bonds Initiated by a Pd Precatalyst with 4,5-Diazafluoren-9-one as an Ancillary Ligand. <i>ChemSusChem</i> , 2019 , 12, 3003-3007	8.3	13	

73	Can Donor Ligands Make Pd(OAc) a Stronger Oxidant? Access to Elusive Palladium(II) Reduction Potentials and Effects of Ancillary Ligands via Palladium(II)/Hydroquinone Redox Equilibria. <i>Journal of the American Chemical Society</i> , 2020 , 142, 19678-19688	16.4	13
72	Discovering Inexpensive, Effective Catalysts for Solar Energy Conversion: An Authentic Research Laboratory Experience. <i>Journal of Chemical Education</i> , 2016 , 93, 650-657	2.4	12
71	Efficient electrochemical synthesis of robust, densely functionalized water soluble quinones. <i>Chemical Communications</i> , 2020 , 56, 1199-1202	5.8	12
70	Nucleophilic Thiols Reductively Cleave Ether Linkages in Lignin Model Polymers and Lignin. <i>ChemSusChem</i> , 2020 , 13, 4394-4399	8.3	12
69	Processes for Electrochemical Production of Electrolyte-free Hydrogen Peroxide. <i>Joule</i> , 2019 , 3, 2889-7	289/1 8	12
68	Catalytic Behavior of Mono-N-Protected Amino-Acid Ligands in Ligand-Accelerated C-H Activation by Palladium(II). <i>Angewandte Chemie - International Edition</i> , 2020 , 59, 10873-10877	16.4	11
67	Oxidative Catalytic Fractionation of Lignocellulosic Biomass under Non-alkaline Conditions. <i>Journal of the American Chemical Society</i> , 2021 , 143, 15462-15470	16.4	11
66	Anthraquinone-Mediated Fuel Cell Anode with an Off-Electrode Heterogeneous Catalyst Accessing High Power Density when Paired with a Mediated Cathode. <i>ACS Energy Letters</i> , 2020 , 5, 1407-1412	20.1	10
65	Development of an O2-Sensitive Fluorescence-Quenching Assay for the Combinatorial Discovery of Electrocatalysts for Water Oxidation. <i>Angewandte Chemie</i> , 2012 , 124, 6780-6784	3.6	10
64	Iron(III) Nitrate/TEMPO-Catalyzed Aerobic Alcohol Oxidation: Distinguishing between Serial versus Integrated Redox Cooperativity. <i>Journal of the American Chemical Society</i> , 2021 , 143, 10565-10570	16.4	10
63	Noncatalyzed Radical Chain Oxidation: Cumene Hydroperoxide 2016 , 15-31		10
62	Chemistry and Mechanism of Oxidation of para-Xylene to Terephthalic Acid Using CoMnBr Catalyst 2016 , 41-66		10
61	Copper-Catalyzed Cross-Coupling of Benzylic C-H Bonds and Azoles with Controlled -Site Selectivity. <i>Journal of the American Chemical Society</i> , 2021 , 143, 14438-14444	16.4	10
60	N-Heterocyclic Carbenes as Ligands for High-Oxidation-State Metal Complexes and Oxidation Catalysis. <i>Topics in Organometallic Chemistry</i> , 2006 , 21-46	0.6	9
59	Detection of Palladium(I) in Aerobic Oxidation Catalysis. <i>Angewandte Chemie</i> , 2017 , 129, 3659-3664	3.6	8
58	Pd-Catalyzed Aerobic Oxidative Coupling of Thiophenes: Synergistic Benefits of Phenanthroline Dione and a Cu Cocatalyst. <i>Journal of the American Chemical Society</i> , 2020 ,	16.4	8
57	From Terephthalic Acid to 2,5-Furandicarboxylic Acid: An Industrial Perspective 2016 , 311-329		8
56	Stable Tetrasubstituted Quinone Redox Reservoir for Enhancing Decoupled Hydrogen and Oxygen Evolution. <i>ACS Energy Letters</i> , 2021 , 6, 1533-1539	20.1	8

55	Effective Biomass Fractionation through Oxygen-Enhanced Alkaline Dxidative Pretreatment. ACS Sustainable Chemistry and Engineering, 2021, 9, 1118-1127	8.3	8
54	Are Phosphines Viable Ligands for Pd-Catalyzed Aerobic Oxidation Reactions? Contrasting Insights from a Survey of Six Reactions. <i>ACS Catalysis</i> , 2018 , 8, 3708-3714	13.1	7
53	Oxidative Amide Coupling from Functionally Diverse Alcohols and Amines Using Aerobic Copper/Nitroxyl Catalysis. <i>Angewandte Chemie</i> , 2019 , 131, 12339-12343	3.6	6
52	Ammonolysis of anilides promoted by ethylene glycol and phosphoric acid. RSC Advances, 2014, 4, 4684	0 5.4 684	43 6
51	"How Should I Think about Voltage? What Is Overpotential?": Establishing an Organic Chemistry Intuition for Electrochemistry. <i>Journal of Organic Chemistry</i> , 2021 , 86, 15875-15885	4.2	6
50	Scalable Flow Electrochemical Alcohol Oxidation: Maintaining High Stereochemical Fidelity in the Synthesis of Levetiracetam <i>Organic Process Research and Development</i> , 2021 , 25, 2601-2607	3.9	6
49	Quinones in Hydrogen Peroxide Synthesis and Catalytic Aerobic Oxidation Reactions 2016 , 219-237		6
48	Benzylic C-H isocyanation/amine coupling sequence enabling high-throughput synthesis of pharmaceutically relevant ureas. <i>Chemical Science</i> , 2021 , 12, 10380-10387	9.4	6
47	Cover Picture: Palladium Oxidase Catalysis: Selective Oxidation of Organic Chemicals by Direct Dioxygen-Coupled Turnover (Angew. Chem. Int. Ed. 26/2004). <i>Angewandte Chemie - International Edition</i> , 2004 , 43, 3347-3347	16.4	5
46	Titelbild: Palladiumoxidasekatalyse: selektive Oxidation durch direkte disauerstoffgekoppelte Umsetzung (Angew. Chem. 26/2004). <i>Angewandte Chemie</i> , 2004 , 116, 3425-3425	3.6	5
45	Deriving the Turnover Frequency of Aminoxyl-Catalyzed Alcohol Oxidation by Chronoamperometry: An Introduction to Organic Electrocatalysis. <i>Journal of Chemical Education</i> , 2021 , 98, 600-606	2.4	5
44	N-Hydroxyphthalimide (NHPI)-Organocatalyzed Aerobic Oxidations: Advantages, Limits, and Industrial Perspectives 2016 , 253-265		5
43	Reactor Concepts for Aerobic Liquid phase Oxidation: Microreactors and Tube Reactors 2016 , 397-419		5
42	Phenol Oxidations 2016 , 97-111		5
41	Radical C(sp3) functionalization and cross-coupling reactions. <i>Nature Reviews Chemistry</i> ,	34.6	5
40	Industrial Prospects for the Chemical and Photochemical Singlet Oxygenation of Organic Compounds 2016 , 369-395		4
39	Copper-Catalyzed Benzylic Cℍ Coupling with Alcohols via Radical Relay		4
38	From Lignin to Valuable Aromatic Chemicals: Lignin Depolymerization and Monomer Separation via Centrifugal Partition Chromatography. <i>ACS Central Science</i> , 2021 , 7, 1831-1837	16.8	4

37	1,4-Butanediol from 1,3-Butadiene 2016 , 159-171		4
36	Cyclohexane Oxidation: History of Transition from Catalyzed to Noncatalyzed 2016 , 33-39		4
35	Cu-Catalyzed Aerobic Oxidation: Overview and New Developments 2016 , 67-83		4
34	Copper-Catalyzed Oxidation of Hydrazones to Diazo Compounds Using Oxygen as the Terminal Oxidant. <i>ACS Catalysis</i> , 2021 , 11, 2676-2683	13.1	4
33	Mechanism of the reaction of an NHC-coordinated palladium(II)-hydride with O2 in acetonitrile. <i>Polyhedron</i> , 2020 , 182, 114501	2.7	3
32	Pd-Catalyzed Aerobic Oxidation Reactions: Industrial Applications and New Developments 2016 , 113-13	38	3
31	Cu-Catalyzed Site-Selective Benzylic Chlorination Enabling Net C-H Coupling with Oxidatively Sensitive Nucleophiles <i>Organic Letters</i> , 2021 ,	6.2	3
30	Green Oxidation of Sulfide to Sulfoxide and Sulfone 2019 , 329-360		2
29	Green Oxidative Synthesis of Aldehydes and Ketones 2019 , 35-78		2
28	Catalytic Behavior of Mono-N-Protected Amino-Acid Ligands in Ligand-Accelerated CH Activation by Palladium(II). <i>Angewandte Chemie</i> , 2020 , 132, 10965-10969	3.6	2
27	Multichannel gas-uptake/evolution reactor for monitoring liquid-phase chemical reactions. <i>Review of Scientific Instruments</i> , 2021 , 92, 044103	1.7	2
26	Catalyst-Controlled Regioselectivity in Pd-Catalyzed Aerobic Oxidative Arylation of Indoles. <i>Organometallics</i> , 2021 , 40, 2198-2203	3.8	2
25	Carbon Materials as Nonmetal Catalysts for Aerobic Oxidations: The Industrial Glyphosate Process and New Developments 2016 , 267-287		2
24	Oxidative Conversion of Renewable Feedstock: Carbohydrate Oxidation 2016 , 349-368		2
23	Overview of Radical Chain Oxidation Chemistry 2016 , 1-14		2
22	Oxidative Carbonylation: Diphenyl Carbonate 2016 , 189-208		2
21	NO x Cocatalysts for Aerobic Oxidation Reactions: Application to Alcohol Oxidation 2016 , 239-251		2
20	Copper-Catalyzed Aerobic Alcohol Oxidation 2016 , 85-96		2

19	Acetaldehyde from Ethylene and Related Wacker-Type Reactions 2016 , 139-158		2
18	Ethylene oligomerization into linear olefins over cobalt oxide on carbon catalyst. <i>Catalysis Science and Technology</i> , 2021 , 11, 3599-3608	5.5	2
17	Sequential oxidation-depolymerization strategies for lignin conversion to low molecular weight aromatic chemicals. <i>Advances in Inorganic Chemistry</i> , 2021 , 77, 99-136	2.1	2
16	Green Oxidative Synthesis of Heterocyclic Compounds 2019 , 307-327		1
15	The Recent Developments of Photocatalytic Oxidation 2019 , 383-408		1
14	Green Oxidative Synthesis of Nitriles 2019 , 199-220		1
13	Benzoquinone Cocatalyst Contributions to DAF/Pd(OAc)-Catalyzed Aerobic Allylic Acetoxylation in the Absence and Presence of a Co(salophen) Cocatalyst. <i>ACS Catalysis</i> , 2021 , 11, 6363-6370	13.1	1
12	Azelaic Acid from Vegetable Feedstock via Oxidative Cleavage with Ozone or Oxygen 2016 , 331-348		1
11	Green Oxidative Synthesis of Substituted Arenes 2019 , 281-305		
10	Green Oxidative Synthesis of Substituted Olefins and Alkynes 2019 , 259-279		
9	Green Oxidative 2019 , 1-34		
8	Cluster Preface: Catalytic Aerobic Oxidations. <i>Synlett</i> , 2017 , 28, 1546-1547	2.2	
7	Organometallic Chemistry: Development and Study of Catalytic Activity. <i>Journal of Chemical Education</i> , 2008 , 85, 1453	2.4	
6	Air Oxidation of Primary Alcohols Catalyzed by Copper(I)/TEMPO. Preparation of 2-Amino-5-bromo-benzaldehyde 2014 , 240-250		
5	Mitsubishi Chemicals Liquid Phase Palladium-Catalyzed Oxidation Technology: Oxidation of Cyclohexene, Acrolein, and Methyl Acrylate to Useful Industrial Chemicals 2016 , 173-187		
4	Aerobic Oxidative Esterification of Aldehydes with Alcohols: The Evolution from Pd P b Intermetallic Catalysts to Au N iO x Nanoparticle Catalysts for the Production of Methyl Methacrylate 2016 , 209-218		
3	Enzyme Catalysis: Exploiting Biocatalysis and Aerobic Oxidations for High-Volume and High-Value Pharmaceutical Syntheses 2016 , 289-309		
2	Sustainable Pd(OAc)2/Hydroquinone Cocatalyst System for Cis-Selective Dibenzoyloxylation of 1,3-Cyclohexadiene. <i>Angewandte Chemie</i> , 2021 , 133, 23366	3.6	

Sustainable Pd(OAc) /Hydroquinone Cocatalyst System for Cis-Selective Dibenzoyloxylation of 1,3-Cyclohexadiene. *Angewandte Chemie - International Edition*, **2021**, 60, 23182-23186

16.4