Shannon S Stahl

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6702636/publications.pdf Version: 2024-02-01

		1614	3261
253	37,115	105	185
papers	citations	h-index	g-index
313	313	313	22247
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Palladium Oxidase Catalysis: Selective Oxidation of Organic Chemicals by Direct Dioxygen-Coupled Turnover. Angewandte Chemie - International Edition, 2004, 43, 3400-3420.	13.8	1,306
2	Copperâ€Catalyzed Aerobic Oxidative CH Functionalizations: Trends and Mechanistic Insights. Angewandte Chemie - International Edition, 2011, 50, 11062-11087.	13.8	1,212
3	Palladium(II)-Catalyzed Alkene Functionalization via Nucleopalladation: Stereochemical Pathways and Enantioselective Catalytic Applications. Chemical Reviews, 2011, 111, 2981-3019.	47.7	1,182
4	Formic-acid-induced depolymerization of oxidized lignin to aromatics. Nature, 2014, 515, 249-252.	27.8	955
5	Overcoming the "Oxidant Problem†Strategies to Use O ₂ as the Oxidant in Organometallic C–H Oxidation Reactions Catalyzed by Pd (and Cu). Accounts of Chemical Research, 2012, 45, 851-863.	15.6	738
6	Electrochemical Water Oxidation with Cobalt-Based Electrocatalysts from pH 0–14: The Thermodynamic Basis for Catalyst Structure, Stability, and Activity. Journal of the American Chemical Society, 2011, 133, 14431-14442.	13.7	686
7	Operando Analysis of NiFe and Fe Oxyhydroxide Electrocatalysts for Water Oxidation: Detection of Fe ⁴⁺ by MĶssbauer Spectroscopy. Journal of the American Chemical Society, 2015, 137, 15090-15093.	13.7	684
8	Tetramethylpiperidine <i>N</i> -Oxyl (TEMPO), Phthalimide <i>N</i> -Oxyl (PINO), and Related <i>N</i> -Oxyl Species: Electrochemical Properties and Their Use in Electrocatalytic Reactions. Chemical Reviews, 2018, 118, 4834-4885.	47.7	681
9	Highly Practical Copper(I)/TEMPO Catalyst System for Chemoselective Aerobic Oxidation of Primary Alcohols. Journal of the American Chemical Society, 2011, 133, 16901-16910.	13.7	668
10	Homogeneous Oxidation of Alkanes by Electrophilic Late Transition Metals. Angewandte Chemie - International Edition, 1998, 37, 2180-2192.	13.8	548
11	Chemoselective Metal-Free Aerobic Alcohol Oxidation in Lignin. Journal of the American Chemical Society, 2013, 135, 6415-6418.	13.7	547
12	Enantioselective cyanation of benzylic C–H bonds via copper-catalyzed radical relay. Science, 2016, 353, 1014-1018.	12.6	496
13	Practical Aerobic Oxidations of Alcohols and Amines with Homogeneous Copper/TEMPO and Related Catalyst Systems. Angewandte Chemie - International Edition, 2014, 53, 8824-8838.	13.8	489
14	CHEMISTRY: Palladium-Catalyzed Oxidation of Organic Chemicals with O2. Science, 2005, 309, 1824-1826.	12.6	485
15	Mechanism of Copper(I)/TEMPO-Catalyzed Aerobic Alcohol Oxidation. Journal of the American Chemical Society, 2013, 135, 2357-2367.	13.7	477
16	Copper-Catalyzed Aerobic Oxidative Amidation of Terminal Alkynes:  Efficient Synthesis of Ynamides. Journal of the American Chemical Society, 2008, 130, 833-835.	13.7	464
17	Ligand-Promoted Palladium-Catalyzed Aerobic Oxidation Reactions. Chemical Reviews, 2018, 118, 2636-2679.	47.7	452
18	Copper-Catalyzed Aerobic Oxidations of Organic Molecules: Pathways for Two-Electron Oxidation with a Four-Electron Oxidant and a One-Electron Redox-Active Catalyst. Accounts of Chemical Research, 2015, 48, 1756-1766.	15.6	432

#	Article	IF	CITATIONS
19	Copper-Catalyzed Aerobic Oxidative Functionalization of an Arene Câ^'H Bond: Evidence for an Aryl-Copper(III) Intermediate. Journal of the American Chemical Society, 2010, 132, 12068-12073.	13.7	425
20	Mimicry of Antimicrobial Host-Defense Peptides by Random Copolymers. Journal of the American Chemical Society, 2007, 129, 15474-15476.	13.7	403
21	Cooperative electrocatalytic alcohol oxidation with electron-proton-transfer mediators. Nature, 2016, 535, 406-410.	27.8	402
22	Palladium-Catalyzed Aerobic Dehydrogenation of Substituted Cyclohexanones to Phenols. Science, 2011, 333, 209-213.	12.6	398
23	Highly Regioselective Pd-Catalyzed Intermolecular Aminoacetoxylation of Alkenes and Evidence forcis-Aminopalladation and SN2 Câ^'O Bond Formation. Journal of the American Chemical Society, 2006, 128, 7179-7181.	13.7	397
24	Divergence between Organometallic and Single-Electron-Transfer Mechanisms in Copper(II)-Mediated Aerobic C–H Oxidation. Journal of the American Chemical Society, 2013, 135, 9797-9804.	13.7	396
25	Mechanistic Study of Copper-Catalyzed Aerobic Oxidative Coupling of Arylboronic Esters and Methanol: Insights into an Organometallic Oxidase Reaction. Journal of the American Chemical Society, 2009, 131, 5044-5045.	13.7	352
26	Electrochemical Oxidation of Organic Molecules at Lower Overpotential: Accessing Broader Functional Group Compatibility with Electronâ^Proton Transfer Mediators. Accounts of Chemical Research, 2020, 53, 561-574.	15.6	347
27	Carbonâ^'Nitrogen Bond Formation Involving Well-Defined Arylâ^'Copper(III) Complexes. Journal of the American Chemical Society, 2008, 130, 9196-9197.	13.7	346
28	Synthesis of Cyclic Enones via Direct Palladium-Catalyzed Aerobic Dehydrogenation of Ketones. Journal of the American Chemical Society, 2011, 133, 14566-14569.	13.7	341
29	Mechanistic Study of Alcohol Oxidation by the Pd(OAc)2/O2/DMSO Catalyst System and Implications for the Development of Improved Aerobic Oxidation Catalysts. Journal of the American Chemical Society, 2002, 124, 766-767.	13.7	320
30	Copper(I)/ABNO-Catalyzed Aerobic Alcohol Oxidation: Alleviating Steric and Electronic Constraints of Cu/TEMPO Catalyst Systems. Journal of the American Chemical Society, 2013, 135, 15742-15745.	13.7	314
31	Quinone atalyzed Selective Oxidation of Organic Molecules. Angewandte Chemie - International Edition, 2015, 54, 14638-14658.	13.8	301
32	Palladium-Catalyzed Aerobic Oxidative Amination of Alkenes:Â Development of Intra- and Intermolecular Aza-Wacker Reactions. Inorganic Chemistry, 2007, 46, 1910-1923.	4.0	296
33	Exploring the Mechanism of Aqueous Câ^'H Activation by Pt(II) through Model Chemistry:Â Evidence for the Intermediacy of Alkylhydridoplatinum(IV) and Alkane σ-Adducts. Journal of the American Chemical Society, 1996, 118, 5961-5976.	13.7	284
34	Oxygenation of Nitrogen-Coordinated Palladium(0):Â Synthetic, Structural, and Mechanistic Studies and Implications for Aerobic Oxidation Catalysis. Journal of the American Chemical Society, 2001, 123, 7188-7189.	13.7	264
35	Allylic Câ^'H Acetoxylation with a 4,5-Diazafluorenone-Ligated Palladium Catalyst: A Ligand-Based Strategy To Achieve Aerobic Catalytic Turnover. Journal of the American Chemical Society, 2010, 132, 15116-15119.	13.7	249
36	Direct observation of CuI/CuIII redox steps relevant to Ullmann-type coupling reactions. Chemical Science, 2010, 1, 326.	7.4	246

#	Article	IF	CITATIONS
37	Mechanistic Studies of the Reaction of Reduced Methane Monooxygenase Hydroxylase with Dioxygen and Substrates. Journal of the American Chemical Society, 1999, 121, 3876-3887.	13.7	240
38	Aerobic Oxidative Amination of Unactivated Alkenes Catalyzed by Palladium. Journal of the American Chemical Society, 2005, 127, 2868-2869.	13.7	226
39	Structureâ^'activity Relationships among Random Nylon-3 Copolymers That Mimic Antibacterial Host-Defense Peptides. Journal of the American Chemical Society, 2009, 131, 9735-9745.	13.7	225
40	Two-Faced Reactivity of Alkenes:Âcis- versustrans-Aminopalladation in Aerobic Pd-Catalyzed Intramolecular Aza-Wacker Reactions. Journal of the American Chemical Society, 2007, 129, 6328-6335.	13.7	224
41	Mechanism of Pd(OAc)2/DMSO-Catalyzed Aerobic Alcohol Oxidation:Â Mass-Transfer-Limitation Effects and Catalyst Decomposition Pathways. Journal of the American Chemical Society, 2006, 128, 4348-4355.	13.7	220
42	A survey of diverse earth abundant oxygen evolution electrocatalysts showing enhanced activity from Ni–Fe oxides containing a third metal. Energy and Environmental Science, 2014, 7, 2376-2382.	30.8	211
43	Quinone 1 e [–] and 2 e [–] /2 H ⁺ Reduction Potentials: Identification and Analysis of Deviations from Systematic Scaling Relationships. Journal of the American Chemical Society, 2016, 138, 15903-15910.	13.7	211
44	Catalytic Transamidation under Moderate Conditions. Journal of the American Chemical Society, 2003, 125, 3422-3423.	13.7	207
45	Electrocatalytic Alcohol Oxidation with TEMPO and Bicyclic Nitroxyl Derivatives: Driving Force Trumps Steric Effects. Journal of the American Chemical Society, 2015, 137, 14751-14757.	13.7	207
46	Ligand-Modulated Palladium Oxidation Catalysis:  Mechanistic Insights into Aerobic Alcohol Oxidation with the Pd(OAc)2/Pyridine Catalyst System. Organic Letters, 2002, 4, 4179-4181.	4.6	201
47	Copper/TEMPO-Catalyzed Aerobic Alcohol Oxidation: Mechanistic Assessment of Different Catalyst Systems. ACS Catalysis, 2013, 3, 2599-2605.	11.2	201
48	Mechanistic Characterization of Aerobic Alcohol Oxidation Catalyzed by Pd(OAc)2/Pyridine Including Identification of the Catalyst Resting State and the Origin of Nonlinear [Catalyst] Dependence. Journal of the American Chemical Society, 2004, 126, 11268-11278.	13.7	195
49	Bioinspired Aerobic Oxidation of Secondary Amines and Nitrogen Heterocycles with a Bifunctional Quinone Catalyst. Journal of the American Chemical Society, 2014, 136, 506-512.	13.7	195
50	Characterization of Peroxo and Hydroperoxo Intermediates in the Aerobic Oxidation ofN-Heterocyclic-Carbene-Coordinated Palladium(0). Journal of the American Chemical Society, 2004, 126, 10212-10213.	13.7	194
51	Co/NHPI-mediated aerobic oxygenation of benzylic C–H bonds in pharmaceutically relevant molecules. Chemical Science, 2017, 8, 1282-1287.	7.4	190
52	Catalytic Transamidation Reactions Compatible with Tertiary Amide Metathesis under Ambient Conditions. Journal of the American Chemical Society, 2009, 131, 10003-10008.	13.7	187
53	Merging Photochemistry with Electrochemistry: Functionalâ€Group Tolerant Electrochemical Amination of C(sp ³)â^'H Bonds. Angewandte Chemie - International Edition, 2019, 58, 6385-6390.	13.8	187
54	Aerobic Dehydrogenation of Cyclohexanone to Phenol Catalyzed by Pd(TFA) ₂ /2-Dimethylaminopyridine: Evidence for the Role of Pd Nanoparticles. Journal of the American Chemical Society, 2013, 135, 8213-8221.	13.7	183

#	Article	IF	CITATIONS
55	Efficient Intramolecular Oxidative Amination of Olefins through Direct Dioxygen-Coupled Palladium Catalysis. Angewandte Chemie - International Edition, 2002, 41, 164-166.	13.8	180
56	Mechanism of Alcohol Oxidation Mediated by Copper(II) and Nitroxyl Radicals. Journal of the American Chemical Society, 2014, 136, 12166-12173.	13.7	177
57	Regioselective copper-catalyzed chlorination and bromination of arenes with O2 as the oxidant. Chemical Communications, 2009, , 6460.	4.1	176
58	Characterization of NiFe oxyhydroxide electrocatalysts by integrated electronic structure calculations and spectroelectrochemistry. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 3050-3055.	7.1	175
59	Experimental Limiting Oxygen Concentrations for Nine Organic Solvents at Temperatures and Pressures Relevant to Aerobic Oxidations in the Pharmaceutical Industry. Organic Process Research and Development, 2015, 19, 1537-1543.	2.7	174
60	Inverse spinel NiFeAlO4 as a highly active oxygen evolution electrocatalyst: promotion of activity by a redox-inert metal ion. Energy and Environmental Science, 2014, 7, 1382.	30.8	167
61	Reaction of Molecular Oxygen with a Pd ^{II} -Hydride To Produce a Pd ^{II} -Hydroperoxide: Experimental Evidence for an HX-Reductive-Elimination Pathway. Journal of the American Chemical Society, 2008, 130, 5753-5762.	13.7	163
62	Aerobic Dehydrogenation of Cyclohexanone to Cyclohexenone Catalyzed by Pd(DMSO) ₂ (TFA) ₂ : Evidence for Ligand-Controlled Chemoselectivity. Journal of the American Chemical Society, 2013, 135, 8205-8212.	13.7	162
63	Modular <i>o</i> -Quinone Catalyst System for Dehydrogenation of Tetrahydroquinolines under Ambient Conditions. Journal of the American Chemical Society, 2014, 136, 11910-11913.	13.7	162
64	Copper(I)/TEMPO-catalyzed aerobic oxidation of primary alcohols to aldehydes with ambient air. Nature Protocols, 2012, 7, 1161-1166.	12.0	159
65	Dual Mechanism of Bacterial Lethality for a Cationic Sequence-Random Copolymer that Mimics Host-Defense Antimicrobial Peptides. Journal of Molecular Biology, 2008, 379, 38-50.	4.2	158
66	Cu/Nitroxyl-Catalyzed Aerobic Oxidation of Primary Amines into Nitriles at Room Temperature. ACS Catalysis, 2013, 3, 1652-1656.	11.2	157
67	Direct aerobic α,β-dehydrogenation of aldehydes and ketones with a Pd(TFA) ₂ /4,5-diazafluorenone catalyst. Chemical Science, 2012, 3, 887-891.	7.4	155
68	<i>N</i> -Hydroxyphthalimide-Mediated Electrochemical Iodination of Methylarenes and Comparison to Electron-Transfer-Initiated C–H Functionalization. Journal of the American Chemical Society, 2018, 140, 22-25.	13.7	155
69	Development of safe and scalable continuous-flow methods for palladium-catalyzed aerobic oxidation reactions. Green Chemistry, 2010, 12, 1180.	9.0	152
70	Reaction of Molecular Oxygen with a PdII– Hydride To Produce a PdII–Hydroperoxide: Acid Catalysis and Implications for Pd-Catalyzed Aerobic Oxidation Reactions. Angewandte Chemie - International Edition, 2006, 45, 2904-2907.	13.8	146
71	Dioxygen-Coupled Oxidative Amination of Styrene. Journal of the American Chemical Society, 2003, 125, 12996-12997.	13.7	145
72	The "Best Catalyst―for Water Oxidation Depends on the Oxidation Method Employed: A Case Study of Manganese Oxides. Journal of the American Chemical Society, 2015, 137, 8384-8387.	13.7	143

#	Article	IF	CITATIONS
73	Chemoselective Organocatalytic Aerobic Oxidation of Primary Amines to Secondary Imines. Organic Letters, 2012, 14, 2850-2853.	4.6	142
74	Cobalt analogs of Ru-based water oxidation catalysts: overcoming thermodynamic instability and kinetic lability to achieve electrocatalytic O2 evolution. Chemical Science, 2012, 3, 3058.	7.4	140
75	Aerobic Intramolecular Oxidative Amination of Alkenes Catalyzed by NHC-Coordinated Palladium Complexes. Organic Letters, 2006, 8, 2257-2260.	4.6	139
76	"Inverse-Electron-Demand―Ligand Substitution in Palladium(0)â^'Olefin Complexes. Journal of the American Chemical Society, 2003, 125, 12-13.	13.7	138
77	Aerobic Oxidative Heck/Dehydrogenation Reactions of Cyclohexenones: Efficient Access to <i>meta</i> ‣ubstituted Phenols. Angewandte Chemie - International Edition, 2013, 52, 3672-3675.	13.8	136
78	Catalytic Aerobic Dehydrogenation of Nitrogen Heterocycles Using Heterogeneous Cobalt Oxide Supported on Nitrogen-Doped Carbon. Organic Letters, 2015, 17, 4404-4407.	4.6	136
79	Catalyst-Controlled Regioselectivity in the Synthesis of Branched Conjugated Dienes via Aerobic Oxidative Heck Reactions. Journal of the American Chemical Society, 2012, 134, 16496-16499.	13.7	135
80	Regiocontrolled aerobic oxidative coupling of indoles and benzene using Pd catalysts with 4,5-diazafluorene ligands. Chemical Communications, 2011, 47, 10257.	4.1	132
81	Enantioselective Hydroformylation of <i>N</i> -Vinyl Carboxamides, Allyl Carbamates, and Allyl Ethers Using Chiral Diazaphospholane Ligands. Journal of the American Chemical Society, 2010, 132, 14027-14029.	13.7	131
82	Insertion of Molecular Oxygen into a Palladiumâ^'Hydride Bond:Â Computational Evidence for Two Nearly Isoenergetic Pathways. Journal of the American Chemical Society, 2007, 129, 4410-4422.	13.7	130
83	Palladium-Catalyzed Aerobic Dehydrogenation of Cyclic Hydrocarbons for the Synthesis of Substituted Aromatics and Other Unsaturated Products. ACS Catalysis, 2016, 6, 8201-8213.	11.2	130
84	Efficient Aerobic Oxidation of Secondary Alcohols at Ambient Temperature with an ABNO/NO _{<i>x</i>} Catalyst System. ACS Catalysis, 2013, 3, 2612-2616.	11.2	129
85	Efficient and Selective Cu/Nitroxyl-Catalyzed Methods for Aerobic Oxidative Lactonization of Diols. Journal of the American Chemical Society, 2015, 137, 3767-3770.	13.7	126
86	Formation and Reductive Elimination of a Hydridoalkylplatinum(IV) Intermediate upon Protonolysis of an Alkylplatinum(II) Complex. Journal of the American Chemical Society, 1995, 117, 9371-9372.	13.7	125
87	Feedstocks to Pharmacophores: Cu-Catalyzed Oxidative Arylation of Inexpensive Alkylarenes Enabling Direct Access to Diarylalkanes. Journal of the American Chemical Society, 2017, 139, 7705-7708.	13.7	125
88	Kinetic and Spectroscopic Studies of Aerobic Copper(II)-Catalyzed Methoxylation of Arylboronic Esters and Insights into Aryl Transmetalation to Copper(II). Organometallics, 2012, 31, 7948-7957.	2.3	122
89	Pd-Catalyzed Semmler–Wolff Reactions for the Conversion of Substituted Cyclohexenone Oximes to Primary Anilines. Journal of the American Chemical Society, 2013, 135, 13664-13667.	13.7	122
90	Mechanistic Study of Asymmetric Oxidative Biaryl Coupling: Evidence for Self-Processing of the Copper Catalyst to Achieve Control of Oxidase vs Oxygenase Activity. Journal of the American Chemical Society, 2008, 130, 12232-12233.	13.7	121

#	Article	IF	CITATIONS
91	Discovery and Mechanistic Study of Al ^{III} -Catalyzed Transamidation of Tertiary Amides. Journal of the American Chemical Society, 2008, 130, 647-654.	13.7	121
92	Observation and Mechanistic Study of Facile CO Bond Formation between a Wellâ€Defined Aryl–Copper(III) Complex and Oxygen Nucleophiles. Chemistry - A European Journal, 2011, 17, 10643-10650.	3.3	121
93	Electrochemical Aminoxyl-Mediated α-Cyanation of Secondary Piperidines for Pharmaceutical Building Block Diversification. Journal of the American Chemical Society, 2018, 140, 11227-11231.	13.7	121
94	Unexpected Roles of Molecular Sieves in Palladium-Catalyzed Aerobic Alcohol Oxidation. Journal of Organic Chemistry, 2006, 71, 1861-1868.	3.2	120
95	BrÃ,nsted Base-Modulated Regioselectivity in the Aerobic Oxidative Amination of Styrene Catalyzed by Palladium. Journal of the American Chemical Society, 2005, 127, 17888-17893.	13.7	119
96	Lignin Conversion to Low-Molecular-Weight Aromatics via an Aerobic Oxidation-Hydrolysis Sequence: Comparison of Different Lignin Sources. ACS Sustainable Chemistry and Engineering, 2018, 6, 3367-3374.	6.7	118
97	Electrochemical Aminoxyl-Mediated Oxidation of Primary Alcohols in Lignin to Carboxylic Acids: Polymer Modification and Depolymerization. Journal of the American Chemical Society, 2019, 141, 15266-15276.	13.7	118
98	Electrochemical Oxidation of Alcohols and Aldehydes to Carboxylic Acids Catalyzed by 4-Acetamido-TEMPO: An Alternative to "Anelli―and "Pinnick―Oxidations. ACS Catalysis, 2018, 8, 6738-6744.	11.2	114
99	Practical Synthesis of Amides via Copper/ABNO-Catalyzed Aerobic Oxidative Coupling of Alcohols and Amines. Journal of the American Chemical Society, 2016, 138, 6416-6419.	13.7	113
100	Mediated Fuel Cells: Soluble Redox Mediators and Their Applications to Electrochemical Reduction of O ₂ and Oxidation of H ₂ , Alcohols, Biomass, and Complex Fuels. Chemical Reviews, 2020, 120, 3749-3786.	47.7	113
101	Enantioselective Pd(II)-Catalyzed Aerobic Oxidative Amidation of Alkenes and Insights into the Role of Electronic Asymmetry in Pyridine-Oxazoline Ligands. Organic Letters, 2011, 13, 2830-2833.	4.6	112
102	Characterization of DMSO Coordination to Palladium(II) in Solution and Insights into the Aerobic Oxidation Catalyst, Pd(DMSO) ₂ (TFA) ₂ . Inorganic Chemistry, 2012, 51, 11898-11909.	4.0	112
103	Noncovalent Immobilization of Molecular Electrocatalysts for Chemical Synthesis: Efficient Electrochemical Alcohol Oxidation with a Pyrene–TEMPO Conjugate. Angewandte Chemie - International Edition, 2017, 56, 8892-8897.	13.8	112
104	Site-Selective Copper-Catalyzed Azidation of Benzylic C–H Bonds. Journal of the American Chemical Society, 2020, 142, 11388-11393.	13.7	112
105	Co(salophen)-Catalyzed Aerobic Oxidation of p-Hydroquinone: Mechanism and Implications for Aerobic Oxidation Catalysis. Journal of the American Chemical Society, 2016, 138, 4186-4193.	13.7	111
106	Copper-catalysed benzylic C–H coupling with alcohols via radical relay enabled by redox buffering. Nature Catalysis, 2020, 3, 358-367.	34.4	108
107	PdII Complexes Possessing a Seven-Membered N-Heterocyclic Carbene Ligand. Angewandte Chemie - International Edition, 2005, 44, 5269-5272.	13.8	107
108	C(sp ³)–H methylation enabled by peroxide photosensitization and Ni-mediated radical coupling. Science, 2021, 372, 398-403.	12.6	107

#	Article	IF	CITATIONS
109	Synthesis of Pyrrolidines via Palladium(II)-Catalyzed Aerobic Oxidative Carboamination of Butyl Vinyl Ether and Styrenes with Allyl Tosylamides. Organic Letters, 2006, 8, 3251-3254.	4.6	105
110	Insights into the Spin-Forbidden Reaction between L2Pd0 and Molecular Oxygen. Journal of the American Chemical Society, 2004, 126, 16302-16303.	13.7	103
111	Electrochemical Functionalâ€Groupâ€Tolerant Shonoâ€ŧype Oxidation of Cyclic Carbamates Enabled by Aminoxyl Mediators. Angewandte Chemie - International Edition, 2018, 57, 6686-6690.	13.8	103
112	Mechanism of Pd(OAc) ₂ /Pyridine Catalyst Reoxidation by O ₂ : Influence of Labile Monodentate Ligands and Identification of a Biomimetic Mechanism for O ₂ Activation. Chemistry - A European Journal, 2009, 15, 2915-2922.	3.3	101
113	Molecular Cobalt Catalysts for O ₂ Reduction: Low-Overpotential Production of H ₂ O ₂ and Comparison with Iron-Based Catalysts. Journal of the American Chemical Society, 2017, 139, 16458-16461.	13.7	101
114	Formation of Enamides via Palladium(II)-Catalyzed Vinyl Transfer from Vinyl Ethers to Nitrogen Nucleophiles. Organic Letters, 2004, 6, 1845-1848.	4.6	100
115	Modular Synthesis of 1,2â€Diamine Derivatives by Palladiumâ€Catalyzed Aerobic Oxidative Cyclization of Allylic Sulfamides. Angewandte Chemie - International Edition, 2010, 49, 5529-5532.	13.8	100
116	Pd-Catalyzed Aerobic Oxidative Coupling of Arenes: Evidence for Transmetalation between Two Pd(II)-Aryl Intermediates. Journal of the American Chemical Society, 2014, 136, 9914-9917.	13.7	100
117	Aerobic Oxidative Coupling of <i>o</i> â€Xylene: Discovery of 2â€Fluoropyridine as a Ligand to Support Selective Pdâ€Catalyzed Ci£¿H Functionalization. Advanced Synthesis and Catalysis, 2010, 352, 3223-3229.	4.3	98
118	Mechanism of AlIII-Catalyzed Transamidation of Unactivated Secondary Carboxamides. Journal of the American Chemical Society, 2006, 128, 5177-5183.	13.7	95
119	Continuous-Flow Aerobic Oxidation of Primary Alcohols with a Copper(I)/TEMPO Catalyst. Organic Process Research and Development, 2013, 17, 1247-1251.	2.7	94
120	Intramolecular Pd(II)-Catalyzed Aerobic Oxidative Amination of Alkenes: Synthesis of Six-Membered <i>N</i> -Heterocycles. Organic Letters, 2012, 14, 1234-1237.	4.6	88
121	Development of 7-membered N-heterocyclic carbene ligands for transition metals. Journal of Organometallic Chemistry, 2005, 690, 6143-6155.	1.8	86
122	High-Potential Electrocatalytic O ₂ Reduction with Nitroxyl/NO _{<i>x</i>} Mediators: Implications for Fuel Cells and Aerobic Oxidation Catalysis. ACS Central Science, 2015, 1, 234-243.	11.3	86
123	Synthesis of PdII complexes bearing an enantiomerically resolved seven-membered N-heterocyclic carbene ligand and initial studies of their use in asymmetric Wacker-type oxidative cyclization reactions. Tetrahedron, 2009, 65, 5084-5092.	1.9	85
124	Reconciling the Stereochemical Course of Nucleopalladation with the Development of Enantioselective Wackerâ€Type Cyclizations. Angewandte Chemie - International Edition, 2012, 51, 11505-11509.	13.8	85
125	Reversible Alkene Insertion into the Pd–N Bond of Pd(II)-Sulfonamidates and Implications for Catalytic Amidation Reactions. Journal of the American Chemical Society, 2011, 133, 18594-18597.	13.7	84
126	Palladium-Catalyzed Aerobic Oxidative Dehydrogenation of Cyclohexenes to Substituted Arene Derivatives. Journal of the American Chemical Society, 2015, 137, 3454-3457.	13.7	81

#	Article	IF	CITATIONS
127	Palladium-Catalyzed Oxidative Amination of Alkenes:  Improved Catalyst Reoxidation Enables the Use of Alkene as the Limiting Reagent. Organic Letters, 2007, 9, 4331-4334.	4.6	80
128	Process Development of Cul/ABNO/NMI-Catalyzed Aerobic Alcohol Oxidation. Organic Process Research and Development, 2015, 19, 1548-1553.	2.7	80
129	Funneling aromatic products of chemically depolymerized lignin into 2-pyrone-4-6-dicarboxylic acid with <i>Novosphingobium aromaticivorans</i> . Green Chemistry, 2019, 21, 1340-1350.	9.0	79
130	Mechanistic Studies of Wacker-Type Intramolecular Aerobic Oxidative Amination of Alkenes Catalyzed by Pd(OAc) ₂ /Pyridine. Journal of Organic Chemistry, 2011, 76, 1031-1044.	3.2	78
131	Palladium-Catalyzed Oxidation Reactions: Comparison of Benzoquinone and Molecular Oxygen as Stoichiometric Oxidants. , 2006, , 149-189.		77
132	Discovery of Multicomponent Heterogeneous Catalysts via Admixture Screening: PdBiTe Catalysts for Aerobic Oxidative Esterification of Primary Alcohols. Journal of the American Chemical Society, 2017, 139, 1690-1698.	13.7	77
133	Selective electrochemical generation of benzylic radicals enabled by ferrocene-based electron-transfer mediators. Chemical Science, 2018, 9, 356-361.	7.4	77
134	Reaction of Molecular Oxygen with an NHC-Coordinated PdO Complex: Computational Insights and Experimental Implications. Angewandte Chemie - International Edition, 2007, 46, 601-604.	13.8	76
135	Aerobic Alcohol Oxidation Using a Copper(I)/TEMPO Catalyst System: A Green, Catalytic Oxidation Reaction for the Undergraduate Organic Chemistry Laboratory. Journal of Chemical Education, 2013, 90, 102-105.	2.3	75
136	O ₂ insertion into a palladium(<scp>ii</scp>)-hydride bond: Observation of mechanistic crossover between HX-reductive-elimination and hydrogen-atom-abstraction pathways. Chemical Science, 2011, 2, 326-330.	7.4	74
137	Radical C(sp3)–H functionalization and cross-coupling reactions. Nature Reviews Chemistry, 2022, 6, 405-427.	30.2	73
138	Structural Effects on the pH-Dependent Redox Properties of Organic Nitroxyls: Pourbaix Diagrams for TEMPO, ABNO, and Three TEMPO Analogs. Journal of Organic Chemistry, 2018, 83, 7323-7330.	3.2	68
139	Copper-Catalyzed C–H Fluorination/Functionalization Sequence Enabling Benzylic C–H Cross Coupling with Diverse Nucleophiles. Organic Letters, 2020, 22, 5753-5757.	4.6	68
140	Aerobic Oxidation of Diverse Primary Alcohols to Methyl Esters with a Readily Accessible Heterogeneous Pd/Bi/Te Catalyst. Organic Letters, 2013, 15, 5072-5075.	4.6	66
141	Oxidative Catalytic Fractionation of Lignocellulosic Biomass under Non-alkaline Conditions. Journal of the American Chemical Society, 2021, 143, 15462-15470.	13.7	65
142	Palladium-Catalyzed Intermolecular Aminoacetoxylation of Alkenes and the Influence of PhI(OAc)2 on Aminopalladation Stereoselectivity. Journal of Organic Chemistry, 2013, 78, 6309-6315.	3.2	63
143	Copper(ii)-mediated oxidative cyclization of enamides to oxazoles. Organic and Biomolecular Chemistry, 2012, 10, 3866.	2.8	62
144	Synthesis of Vicinal Aminoalcohols by Stereoselective Azaâ€Wacker Cyclizations: Access to (â~')â€Acosamine by Redox Relay. Angewandte Chemie - International Edition, 2013, 52, 11867-11870.	13.8	62

9

#	Article	IF	CITATIONS
145	Aerobic Oxidation of Diverse Primary Alcohols to Carboxylic Acids with a Heterogeneous Pd–Bi–Te/C (PBT/C) Catalyst. Organic Process Research and Development, 2017, 21, 1388-1393.	2.7	62
146	Fluorideâ€Modulated Cobalt Catalysts for Electrochemical Oxidation of Water under Nonâ€Alkaline Conditions. ChemSusChem, 2010, 3, 1176-1179.	6.8	60
147	Development of an O ₂ â€5ensitive Fluorescenceâ€Quenching Assay for the Combinatorial Discovery of Electrocatalysts for Water Oxidation. Angewandte Chemie - International Edition, 2012, 51, 6676-6680.	13.8	60
148	From Lignin to Valuable Aromatic Chemicals: Lignin Depolymerization and Monomer Separation via Centrifugal Partition Chromatography. ACS Central Science, 2021, 7, 1831-1837.	11.3	59
149	Cooperative Electrocatalytic O ₂ Reduction Involving Co(salophen) with <i>p-</i> Hydroquinone as an Electron–Proton Transfer Mediator. Journal of the American Chemical Society, 2017, 139, 18472-18475.	13.7	58
150	BrÃ,nsted Acid Scaling Relationships Enable Control Over Product Selectivity from O ₂ Reduction with a Mononuclear Cobalt Porphyrin Catalyst. ACS Central Science, 2019, 5, 1024-1034.	11.3	58
151	Titanium(IV)-Mediated Conversion of Carboxamides to Amidines and Implications for Catalytic Transamidation. Organometallics, 2005, 24, 5208-5210.	2.3	57
152	Cu-Catalyzed Aerobic Oxidative N–N Coupling of Carbazoles and Diarylamines Including Selective Cross-Coupling. Journal of the American Chemical Society, 2018, 140, 9074-9077.	13.7	56
153	Benzoquinone-Promoted Reaction of O ₂ with a Pd ^{II} â~Hydride. Journal of the American Chemical Society, 2011, 133, 5732-5735.	13.7	55
154	PTFE-Membrane Flow Reactor for Aerobic Oxidation Reactions and Its Application to Alcohol Oxidation. Organic Process Research and Development, 2015, 19, 858-864.	2.7	55
155	Palladium catalyzed aryl C–H amination with O ₂ via in situ formation of peroxide-based oxidant(s) from dioxane. Catalysis Science and Technology, 2014, 4, 4301-4307.	4.1	54
156	Mechanism of Copper/Azodicarboxylate-Catalyzed Aerobic Alcohol Oxidation: Evidence for Uncooperative Catalysis. Journal of the American Chemical Society, 2016, 138, 199-206.	13.7	54
157	Detection of Palladium(I) in Aerobic Oxidation Catalysis. Angewandte Chemie - International Edition, 2017, 56, 3605-3610.	13.8	53
158	Electronic Structural Analysis of Copper(II)–TEMPO/ABNO Complexes Provides Evidence for Copper(I)–Oxoammonium Character. Journal of the American Chemical Society, 2017, 139, 13507-13517.	13.7	53
159	Reaction of O ₂ with [(â^')-Sparteine]Pd(H)Cl: Evidence for an Intramolecular [H–L] ⁺ "Reductive Elimination―Pathway. Journal of the American Chemical Society, 2011, 133, 13268-13271.	13.7	51
160	Diazafluorenone-Promoted Oxidation Catalysis: Insights into the Role of Bidentate Ligands in Pd-Catalyzed Aerobic Aza-Wacker Reactions. ACS Catalysis, 2016, 6, 3340-3348.	11.2	51
161	Electrochemical C–H oxygenation and alcohol dehydrogenation involving Fe-oxo species using water as the oxygen source. Chemical Science, 2019, 10, 7542-7548.	7.4	51
162	Electrochemical Strategy for Hydrazine Synthesis: Development and Overpotential Analysis of Methods for Oxidative N–N Coupling of an Ammonia Surrogate. Journal of the American Chemical Society, 2020, 142, 12349-12356.	13.7	51

#	Article	IF	CITATIONS
163	Merging Photochemistry with Electrochemistry: Functionalâ€Group Tolerant Electrochemical Amination of C(sp 3)â^'H Bonds. Angewandte Chemie, 2019, 131, 6451-6456.	2.0	50
164	Synthesis and isolation of a stable, axially-chiral seven-membered N-heterocyclic carbene. Dalton Transactions, 2009, , 2284.	3.3	49
165	Introduction: Oxygen Reduction and Activation in Catalysis. Chemical Reviews, 2018, 118, 2299-2301.	47.7	49
166	Molecular Cobalt Catalysts for O ₂ Reduction to H ₂ O ₂ : Benchmarking Catalyst Performance via Rate–Overpotential Correlations. ACS Catalysis, 2020, 10, 12031-12039.	11.2	49
167	Continuous Flow Aerobic Alcohol Oxidation Reactions Using a Heterogeneous Ru(OH) _{<i>x</i>} /Al ₂ O ₃ Catalyst. Organic Process Research and Development, 2014, 18, 1503-1508.	2.7	48
168	Pd-Catalyzed Aerobic Oxidative Biaryl Coupling: Non-Redox Cocatalysis by Cu(OTf)2 and Discovery of Fe(OTf)3 as a Highly Effective Cocatalyst. Journal of the American Chemical Society, 2017, 139, 5704-5707.	13.7	48
169	Stable TEMPO and ABNO Catalyst Solutions for User-Friendly (bpy)Cu/Nitroxyl-Catalyzed Aerobic Alcohol Oxidation. Journal of Organic Chemistry, 2015, 80, 11184-11188.	3.2	46
170	Kinetic and Mechanistic Characterization of Low-Overpotential, H ₂ O ₂ -Selective Reduction of O ₂ Catalyzed by N ₂ O ₂ -Ligated Cobalt Complexes. Journal of the American Chemical Society, 2018, 140, 10890-10899.	13.7	46
171	Mechanistic analysis of trans C–N reductive elimination from a square-planar macrocyclic aryl-copper(iii) complex. Dalton Transactions, 2011, 40, 8959.	3.3	45
172	"How Should I Think about Voltage? What Is Overpotential?― Establishing an Organic Chemistry Intuition for Electrochemistry. Journal of Organic Chemistry, 2021, 86, 15875-15885.	3.2	45
173	Stereoselective Synthesis of <i>cis-</i> 2,5-Disubstituted Pyrrolidines via Wacker-Type Aerobic Oxidative Cyclization of Alkenes with <i>tert</i> Butanesulfinamide Nucleophiles. Organic Letters, 2012, 14, 1242-1245.	4.6	44
174	Copper-Catalyzed Cross-Coupling of Benzylic C–H Bonds and Azoles with Controlled <i>N</i> -Site Selectivity. Journal of the American Chemical Society, 2021, 143, 14438-14444.	13.7	44
175	Synthesis of Indole-2-carboxylate Derivatives via Palladium-Catalyzed Aerobic Amination of Aryl C–H Bonds. Organic Letters, 2016, 18, 3586-3589.	4.6	43
176	Structurally Diverse Diazafluorene-Ligated Palladium(II) Complexes and Their Implications for Aerobic Oxidation Reactions. Journal of the American Chemical Society, 2016, 138, 4869-4880.	13.7	43
177	Second-Order Biomimicry: In Situ Oxidative Self-Processing Converts Copper(I)/Diamine Precursor into a Highly Active Aerobic Oxidation Catalyst. ACS Central Science, 2017, 3, 314-321.	11.3	43
178	Replacement of Stoichiometric DDQ with a Low Potential <i>o</i> -Quinone Catalyst Enabling Aerobic Dehydrogenation of Tertiary Indolines in Pharmaceutical Intermediates. Organic Letters, 2019, 21, 1176-1181.	4.6	43
179	Platinum-Based Heterogeneous Catalysts for Nitrile Synthesis via Aerobic Oxidative Coupling of Alcohols and Ammonia. ACS Omega, 2018, 3, 6091-6096.	3.5	42
180	Tailored quinones support high-turnover Pd catalysts for oxidative C–H arylation with O ₂ . Science, 2020, 370, 1454-1460.	12.6	42

#	Article	IF	CITATIONS
181	Comparison of Quinoneâ€Based Catholytes for Aqueous Redox Flow Batteries and Demonstration of Longâ€Term Stability with Tetrasubstituted Quinones. Advanced Energy Materials, 2020, 10, 2000340.	19.5	42
182	"Inverse-Electron-Demand―Ligand Substitution: Experimental and Computational Insights into Olefin Exchange at Palladium(0). Journal of the American Chemical Society, 2004, 126, 14832-14842.	13.7	41
183	Molecular mechanism of acid-triggered aryl–halide reductive elimination in well-defined aryl–Culll–halide species. Dalton Transactions, 2010, 39, 10458.	3.3	41
184	Iron(III) Nitrate/TEMPO-Catalyzed Aerobic Alcohol Oxidation: Distinguishing between Serial versus Integrated Redox Cooperativity. Journal of the American Chemical Society, 2021, 143, 10565-10570.	13.7	40
185	Quinone-Mediated Electrochemical O2 Reduction Accessing High Power Density with an Off-Electrode Co-N/C Catalyst. Joule, 2018, 2, 2722-2731.	24.0	38
186	Similarities between the reactions of dioxygen and alkenes with palladium(0): Relevance to the use of benzoquinone and molecular oxygen as stoichiometric oxidants in palladium-catalyzed oxidation reactions. Journal of Molecular Catalysis A, 2006, 251, 2-7.	4.8	37
187	Modular Synthesis of 1,2â€Diamine Derivatives by Palladiumâ€Catalyzed Aerobic Oxidative Cyclization of Allylic Sulfamides. Angewandte Chemie, 2010, 122, 5661-5664.	2.0	37
188	Copper-Catalyzed Functionalization of Benzylic C–H Bonds with <i>N</i> -Fluorobenzenesulfonimide: Switch from C–N to C–F Bond Formation Promoted by a Redox Buffer and BrÃ,nsted Base. Organic Letters, 2020, 22, 5749-5752.	4.6	37
189	Modular Electrochemical Synthesis Using a Redox Reservoir Paired with Independent Half-Reactions. Joule, 2021, 5, 149-165.	24.0	37
190	Mechanistic Study of Diaryl Ether Bond Cleavage during Palladium atalyzed Lignin Hydrogenolysis. ChemSusChem, 2020, 13, 4487-4494.	6.8	36
191	Regioselective aerobic oxidative Heck reactions with electronically unbiased alkenes: efficient access to l±-alkyl vinylarenes. Chemical Communications, 2015, 51, 12771-12774.	4.1	35
192	Steric Modulation of Chiral Biaryl Diamines via Pd-Catalyzed Directed Câ^'H Arylation. Journal of Organic Chemistry, 2009, 74, 2613-2615.	3.2	34
193	Electrochemical Functionalâ€Groupâ€Tolerant Shonoâ€type Oxidation of Cyclic Carbamates Enabled by Aminoxyl Mediators. Angewandte Chemie, 2018, 130, 6796-6800.	2.0	33
194	Palladium-catalyzed aerobic acetoxylation of benzene using NOx-based redox mediators. Journal of Organometallic Chemistry, 2015, 793, 263-268.	1.8	32
195	Noncovalent Immobilization of Molecular Electrocatalysts for Chemical Synthesis: Efficient Electrochemical Alcohol Oxidation with a Pyrene–TEMPO Conjugate. Angewandte Chemie, 2017, 129, 9018-9023.	2.0	32
196	Operando Spectroscopic and Kinetic Characterization of Aerobic Allylic C–H Acetoxylation Catalyzed by Pd(OAc) ₂ /4,5-Diazafluoren-9-one. Journal of the American Chemical Society, 2019, 141, 10462-10474.	13.7	31
197	Benzylic C–H isocyanation/amine coupling sequence enabling high-throughput synthesis of pharmaceutically relevant ureas. Chemical Science, 2021, 12, 10380-10387.	7.4	31
198	Copper/TEMPO Redox Redux: Analysis of PCET Oxidation of TEMPOH by Copper(II) and the Reaction of TEMPO with Copper(I). Inorganic Chemistry, 2019, 58, 10194-10200.	4.0	30

#	Article	IF	CITATIONS
199	KetoABNO/NO _{<i>x</i>} Cocatalytic Aerobic Oxidation of Aldehydes to Carboxylic Acids and Access to α-Chiral Carboxylic Acids via Sequential Asymmetric Hydroformylation/Oxidation. Organic Letters, 2016, 18, 3590-3593.	4.6	29
200	Chemical and Electrochemical O ₂ Reduction on Earth-Abundant M-N-C Catalysts and Implications for Mediated Electrolysis. Journal of the American Chemical Society, 2022, 144, 922-927.	13.7	29
201	Catalytic Metathesis of Simple Secondary Amides. Angewandte Chemie - International Edition, 2007, 46, 761-763.	13.8	27
202	Oxidative Amide Coupling from Functionally Diverse Alcohols and Amines Using Aerobic Copper/Nitroxyl Catalysis. Angewandte Chemie - International Edition, 2019, 58, 12211-12215.	13.8	27
203	Scalable Flow Electrochemical Alcohol Oxidation: Maintaining High Stereochemical Fidelity in the Synthesis of Levetiracetam. Organic Process Research and Development, 2021, 25, 2601-2607.	2.7	27
204	Nucleophilic Thiols Reductively Cleave Ether Linkages in Lignin Model Polymers and Lignin. ChemSusChem, 2020, 13, 4394-4399.	6.8	26
205	Can Donor Ligands Make Pd(OAc) ₂ a Stronger Oxidant? Access to Elusive Palladium(II) Reduction Potentials and Effects of Ancillary Ligands via Palladium(II)/Hydroquinone Redox Equilibria. Journal of the American Chemical Society, 2020, 142, 19678-19688.	13.7	25
206	O 2 -promoted allylic acetoxylation of alkenes: Assessment of "push―versus "pull―mechanisms and comparison between O 2 and benzoquinone. Polyhedron, 2014, 84, 96-102.	2.2	24
207	Mechanistic Basis for Efficient, Site-Selective, Aerobic Catalytic Turnover in Pd-Catalyzed C–H Imidoylation of Heterocycle-Containing Molecules. Journal of the American Chemical Society, 2017, 139, 14533-14541.	13.7	24
208	Mechanistic Insights into Aerobic Oxidative Methyl Esterification of Primary Alcohols with Heterogeneous PdBiTe Catalysts. ACS Catalysis, 2018, 8, 1038-1047.	11.2	24
209	Mechanistic insights into copper-catalyzed aerobic oxidative coupling of N–N bonds. Chemical Science, 2020, 11, 1170-1175.	7.4	24
210	Efficient electrochemical synthesis of robust, densely functionalized water soluble quinones. Chemical Communications, 2020, 56, 1199-1202.	4.1	24
211	Catalytic Behavior of Monoâ€∢i>Nâ€Protected Aminoâ€Acid Ligands in Ligandâ€Accelerated Câ~'H Activation by Palladium(II). Angewandte Chemie - International Edition, 2020, 59, 10873-10877.	13.8	24
212	Deriving the Turnover Frequency of Aminoxyl-Catalyzed Alcohol Oxidation by Chronoamperometry: An Introduction to Organic Electrocatalysis. Journal of Chemical Education, 2021, 98, 600-606.	2.3	24
213	"Oxidatively Induced―Reductive Elimination of Dioxygen from an η2-Peroxopalladium(II) Complex Promoted by Electron-Deficient Alkenes. Journal of the American Chemical Society, 2006, 128, 2804-2805.	13.7	23
214	Kinetics of Anionic Ring-Opening Polymerization of Variously Substituted Î ² -Lactams: Homopolymerization and Copolymerization. Macromolecules, 2010, 43, 5618-5626.	4.8	23
215	Electronic Structural Comparison of the Reactions of Dioxygen and Alkenes with Nitrogen-Chelated Palladium(0). Inorganic Chemistry, 2010, 49, 8200-8207.	4.0	23
216	Mechanistic Studies of Wacker-Type Amidocyclization of Alkenes Catalyzed by (IMes)Pd(TFA)2(H2O): Kinetic and Stereochemical Implications of Proton Transfer. Journal of Organic Chemistry, 2013, 78, 2083-2090.	3.2	22

#	Article	IF	CITATIONS
217	Copper-Catalyzed Oxidation of Hydrazones to Diazo Compounds Using Oxygen as the Terminal Oxidant. ACS Catalysis, 2021, 11, 2676-2683.	11.2	22
218	Pd-Catalyzed Aerobic Oxidative Coupling of Thiophenes: Synergistic Benefits of Phenanthroline Dione and a Cu Cocatalyst. Journal of the American Chemical Society, 2020, 142, 20318-20323.	13.7	21
219	Speciation Behavior of Copper(II) Acetate in Simple Organic Solvents - Revealing the Effect of Trace Water. European Journal of Inorganic Chemistry, 2014, 2014, 1407-1412.	2.0	20
220	Integration of Anodic and Cathodic Catalysts of Earth-Abundant Materials for Efficient, Scalable CO2 Reduction. Topics in Catalysis, 2015, 58, 57-66.	2.8	20
221	Processes for Electrochemical Production of Electrolyte-free Hydrogen Peroxide. Joule, 2019, 3, 2889-2891.	24.0	20
222	Integrated Two-Stage Alkaline-Oxidative Pretreatment of Hybrid Poplar. Part 1: Impact of Alkaline Pre-Extraction Conditions on Process Performance and Lignin Properties. Industrial & Engineering Chemistry Research, 2019, 58, 15989-15999.	3.7	19
223	Stable Tetrasubstituted Quinone Redox Reservoir for Enhancing Decoupled Hydrogen and Oxygen Evolution. ACS Energy Letters, 2021, 6, 1533-1539.	17.4	19
224	Aerobic Acyloxylation of Allylic Câ^'H Bonds Initiated by a Pd 0 Precatalyst with 4,5â€Diazafluorenâ€9â€one as an Ancillary Ligand. ChemSusChem, 2019, 12, 3003-3007.	6.8	18
225	Discovering Inexpensive, Effective Catalysts for Solar Energy Conversion: An Authentic Research Laboratory Experience. Journal of Chemical Education, 2016, 93, 650-657.	2.3	17
226	Cu-Catalyzed Site-Selective Benzylic Chlorination Enabling Net C–H Coupling with Oxidatively Sensitive Nucleophiles. Organic Letters, 2022, 24, 597-601.	4.6	17
227	Anthraquinone-Mediated Fuel Cell Anode with an Off-Electrode Heterogeneous Catalyst Accessing High Power Density When Paired with a Mediated Cathode. ACS Energy Letters, 2020, 5, 1407-1412.	17.4	15
228	Benzoquinone Cocatalyst Contributions to DAF/Pd(OAc) ₂ -Catalyzed Aerobic Allylic Acetoxylation in the Absence and Presence of a Co(salophen) Cocatalyst. ACS Catalysis, 2021, 11, 6363-6370.	11.2	14
229	Thermal Hydroquinone Oxidation on Co/N-doped Carbon Proceeds by a Band-Mediated Electrochemical Mechanism. Journal of the American Chemical Society, 2022, 144, 11253-11262.	13.7	14
230	Effective Biomass Fractionation through Oxygen-Enhanced Alkaline–Oxidative Pretreatment. ACS Sustainable Chemistry and Engineering, 2021, 9, 1118-1127.	6.7	13
231	Detection of Palladium(I) in Aerobic Oxidation Catalysis. Angewandte Chemie, 2017, 129, 3659-3664.	2.0	12
232	Are Phosphines Viable Ligands for Pd-Catalyzed Aerobic Oxidation Reactions? Contrasting Insights from a Survey of Six Reactions. ACS Catalysis, 2018, 8, 3708-3714.	11.2	11
233	Ethylene oligomerization into linear olefins over cobalt oxide on carbon catalyst. Catalysis Science and Technology, 2021, 11, 3599-3608.	4.1	10
234	Sequential oxidation-depolymerization strategies for lignin conversion to low molecular weight aromatic chemicals. Advances in Inorganic Chemistry, 2021, 77, 99-136.	1.0	10

#	Article	IF	CITATIONS
235	N-Heterocyclic Carbenes as Ligands for High-Oxidation-State Metal Complexes and Oxidation Catalysis. Topics in Organometallic Chemistry, 2006, , 21-46.	0.7	9
236	Ammonolysis of anilides promoted by ethylene glycol and phosphoric acid. RSC Advances, 2014, 4, 46840-46843.	3.6	8
237	Oxidative Amide Coupling from Functionally Diverse Alcohols and Amines Using Aerobic Copper/Nitroxyl Catalysis. Angewandte Chemie, 2019, 131, 12339-12343.	2.0	8
238	Catalyst-Controlled Regioselectivity in Pd-Catalyzed Aerobic Oxidative Arylation of Indoles. Organometallics, 2021, 40, 2198-2203.	2.3	8
239	Catalytic Behavior of Mono―N â€Protected Aminoâ€Acid Ligands in Ligandâ€Accelerated Câ~'H Activation by Palladium(II). Angewandte Chemie, 2020, 132, 10965-10969.	2.0	6
240	Cover Picture: Palladium Oxidase Catalysis: Selective Oxidation of Organic Chemicals by Direct Dioxygen-Coupled Turnover (Angew. Chem. Int. Ed. 26/2004). Angewandte Chemie - International Edition, 2004, 43, 3347-3347.	13.8	5
241	Mechanism of the reaction of an NHC-coordinated palladium(II)-hydride with O2 in acetonitrile. Polyhedron, 2020, 182, 114501.	2.2	5
242	Preface to Special Issue of ChemSusChem : Sustainable Organic Synthesis. ChemSusChem, 2019, 12, 2834-2834.	6.8	2
243	Multichannel gas-uptake/evolution reactor for monitoring liquid-phase chemical reactions. Review of Scientific Instruments, 2021, 92, 044103.	1.3	2
244	Thermodynamic–Kinetic Comparison of Palladium(II)-Mediated Alcohol and Hydroquinone Oxidation. Organometallics, 2022, 41, 3161-3166.	2.3	2
245	Palladium Oxidase Catalysis: Selective Oxidation of Organic Chemicals by Direct Dioxygen-Coupled Turnover. ChemInform, 2004, 35, no.	0.0	1
246	Organometallic Chemistry: Development and Study of Catalytic Activity. Journal of Chemical Education, 2008, 85, 1453.	2.3	0
247	Cluster Preface: Catalytic Aerobic Oxidations. Synlett, 2017, 28, 1546-1547.	1.8	0
248	Sustainable Pd(OAc) 2 /Hydroquinone Cocatalyst System for Cis ‣elective Dibenzoyloxylation of 1,3â€Cyclohexadiene. Angewandte Chemie, 2021, 133, 23366.	2.0	0
249	Sustainable Pd(OAc) 2 /Hydroquinone Cocatalyst System for Cis ‣elective Dibenzoyloxylation of 1,3 yclohexadiene. Angewandte Chemie - International Edition, 2021, 60, 23182-23186.	13.8	0
250	Electrochemical Functionalization of Methylarenes Initiated By Hydrogen Atom Transfer and Comparison to Electron-Transfer-Initiated Functionalization. ECS Meeting Abstracts, 2018, , .	0.0	0
251	Electrochemical Oxidation/Modification of Lignin Mediated By Aminoxyl Radicals. ECS Meeting Abstracts, 2018, , .	0.0	0
252	Use of Imidoxyl Radical Mediators for Electrochemical Oxidation/Depolymerization of Lignin. ECS Meeting Abstracts, 2019, , .	0.0	0

#	Article	IF	CITATIONS
253	Mediated Electrochemical Processes for Energy Conversion, and Relationship to Direct Electrocatalysis. , 0, , .		0