Kunihiko Kaneko

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/670191/publications.pdf Version: 2024-02-01

		57631	53109
195	8,474	44	85
papers	citations	h-index	g-index
212 all docs	212 docs citations	212 times ranked	4435 citing authors

#	Article	IF	CITATIONS
1	Dynamical systems approach to evolution–development congruence: Revisiting Haeckel's recapitulation theory. Journal of Experimental Zoology Part B: Molecular and Developmental Evolution, 2022, 338, 62-75.	0.6	4
2	A scaling law of multilevel evolution: how the balance between within- and among-collective evolution is determined. Genetics, 2022, 220, .	1.2	3
3	Emergence of kinship structures and descent systems: multi-level evolutionary simulation and empirical data analysis. Proceedings of the Royal Society B: Biological Sciences, 2022, 289, 20212641.	1.2	5
4	Dynamical systems theory of cellular reprogramming. Physical Review Research, 2022, 4, .	1.3	3
5	Heterosis of fitness and phenotypic variance in the evolution of a diploid gene regulatory network. , 2022, 1, .		1
6	Direction and Constraint in Phenotypic Evolution: Dimension Reduction and Global Proportionality in Phenotype Fluctuation and Responses. , 2021, , 35-58.		2
7	Adaptation of metabolite leakiness leads to symbiotic chemical exchange and to a resilient microbial ecosystem. PLoS Computational Biology, 2021, 17, e1009143.	1.5	10
8	Evolution of dominance in gene expression pattern associated with phenotypic robustness. Bmc Ecology and Evolution, 2021, 21, 110.	0.7	2
9	Entangled gene regulatory networks with cooperative expression endow robust adaptive responses to unforeseen environmental changes. Physical Review Research, 2021, 3, .	1.3	3
10	Short-term memory by transient oscillatory dynamics in recurrent neural networks. Physical Review Research, 2021, 3, .	1.3	4
11	Dynamics-Evolution Correspondence in Protein Structures. Physical Review Letters, 2021, 127, 098103.	2.9	27
12	Exploitation by asymmetry of information reference in coevolutionary learning in prisoner's dilemma game. Journal of Physics Complexity, 2021, 2, 045007.	0.9	6
13	Evolution of family systems and resultant socio-economic structures. Humanities and Social Sciences Communications, 2021, 8, .	1.3	3
14	Evolution of phenotypic fluctuation under host-parasite interactions. PLoS Computational Biology, 2021, 17, e1008694.	1.5	2
15	Microbial Symbiosis through Advantageous Leakage of Essential Metabolites. Seibutsu Butsuri, 2021, 61, 400-403.	0.0	0
16	Multiple-Timescale Neural Networks: Generation of History-Dependent Sequences and Inference Through Autonomous Bifurcations. Frontiers in Computational Neuroscience, 2021, 15, 743537.	1.2	6
17	Evolution of kinship structures driven by marriage tie and competition. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 2378-2384.	3.3	10
18	Dimensional Reduction in Evolving Spin-Glass Model: Correlation of Phenotypic Responses to Environmental and Mutational Changes. Physical Review Letters, 2020, 124, 218101.	2.9	9

#	Article	IF	CITATIONS
19	Long-range correlation in protein dynamics: Confirmation by structural data and normal mode analysis. PLoS Computational Biology, 2020, 16, e1007670.	1.5	27
20	Epigenetic Ratchet: Spontaneous Adaptation via Stochastic Gene Expression. Scientific Reports, 2020, 10, 459.	1.6	3
21	Advantage of Leakage of Essential Metabolites for Cells. Physical Review Letters, 2020, 124, 048101.	2.9	11
22	Reply to Read and Parkin: Our model correctly expresses the ethnographic nature of the cultural incest taboo and kinship structures. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 9167-9168.	3.3	0
23	Evolutionary dimension reduction in phenotypic space. Physical Review Research, 2020, 2, .	1.3	19
24	Chaos with a high-dimensional torus. Physical Review Research, 2020, 2, .	1.3	5
25	Homeorhesis in Waddington's landscape by epigenetic feedback regulation. Physical Review Research, 2020, 2, .	1.3	20
26	Repeated sequential learning increases memory capacity via effective decorrelation in a recurrent neural network. Physical Review Research, 2020, 2, .	1.3	7
27	Functional sensitivity and mutational robustness of proteins. Physical Review Research, 2020, 2, .	1.3	11
28	Title is missing!. , 2020, 16, e1007670.		0
29	Title is missing!. , 2020, 16, e1007670.		0
30	Title is missing!. , 2020, 16, e1007670.		0
31	Title is missing!. , 2020, 16, e1007670.		Ο
32	The origin of the central dogma through conflicting multilevel selection. Proceedings of the Royal Society B: Biological Sciences, 2019, 286, 20191359.	1.2	11
33	Molecular Diversity and Network Complexity in Growing Protocells. Life, 2019, 9, 53.	1.1	3
34	Functional dynamic by intention recognition in iterated games. New Journal of Physics, 2019, 21, 023025.	1.2	3
35	Statistical Evolutionary Laws in Music Styles. Scientific Reports, 2019, 9, 15993.	1.6	17
36	Emergence of exploitation as symmetry breaking in iterated prisoner's dilemma. Physical Review Research, 2019, 1, .	1.3	11

#	Article	IF	CITATIONS
37	Exponential growth for self-reproduction in a catalytic reaction network: relevance of a minority molecular species and crowdedness. New Journal of Physics, 2018, 20, 035001.	1.2	2
38	Formation of dominant mode by evolution in biological systems. Physical Review E, 2018, 97, 042410.	0.8	38
39	Boundary-induced pattern formation from uniform temporal oscillation. Chaos, 2018, 28, 045110.	1.0	6
40	Cooperative reliable response from sloppy gene-expression dynamics. Europhysics Letters, 2018, 124, 38002.	0.7	4
41	Kinetic Selection of Template Polymer with Complex Sequences. Physical Review Letters, 2018, 121, 118101.	2.9	11
42	Macroscopic Theory for Evolving Biological Systems Akin to Thermodynamics. Annual Review of Biophysics, 2018, 47, 273-290.	4.5	16
43	The origin of a primordial genome through spontaneous symmetry breaking. Nature Communications, 2017, 8, 250.	5.8	33
44	Embedding dual function into molecular motors through collective motion. Scientific Reports, 2017, 7, 44288.	1.6	12
45	Robustness and Plasticity in Biological Rhythms. Seibutsu Butsuri, 2017, 57, 186-190.	0.0	Ο
46	Dynamics robustness of cascading systems. PLoS Computational Biology, 2017, 13, e1005434.	1.5	9
47	Stronger selection can slow down evolution driven by recombination on a smooth fitness landscape. PLoS ONE, 2017, 12, e0183120.	1.1	12
48	Motif analysis for small-number effects in chemical reaction dynamics. Journal of Chemical Physics, 2016, 145, 094111.	1.2	5
49	Enzyme oscillation can enhance the thermodynamic efficiency of cellular metabolism: consequence of anti-phase coupling between reaction flux and affinity. Physical Biology, 2016, 13, 026002.	0.8	8
50	Chaotic Griffiths Phase with Anomalous Lyapunov Spectra in Coupled Map Networks. Physical Review Letters, 2016, 117, 254101.	2.9	9
51	Boundary-induced pattern formation from temporal oscillation: Spatial map analysis. Europhysics Letters, 2016, 116, 48005.	0.7	5
52	Discreteness-induced transitions in multibody reaction systems. Physical Review E, 2016, 94, 022140.	0.8	1
53	Optimal size for emergence of self-replicating polymer system. Physical Review E, 2016, 93, 032503.	0.8	10
54	Negative scaling relationship between molecular diversity and resource abundances. Physical Review E, 2016, 93, 062419.	0.8	6

#	Article	IF	CITATIONS
55	Evolutionâ€development congruence in pattern formation dynamics: Bifurcations in gene expression and regulation of networks structures. Journal of Experimental Zoology Part B: Molecular and Developmental Evolution, 2016, 326, 61-84.	0.6	27
56	Noise-driven growth rate gain in clonal cellular populations. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 3251-3256.	3.3	144
57	Symbiotic Cell Differentiation and Cooperative Growth in Multicellular Aggregates. PLoS Computational Biology, 2016, 12, e1005042.	1.5	14
58	Dynamic Organization of Hierarchical Memories. PLoS ONE, 2016, 11, e0162640.	1.1	7
59	Universal Relationship in Gene-Expression Changes for Cells in Steady-Growth State. Physical Review X, 2015, 5, .	2.8	19
60	Reciprocity Between Robustness of Period and Plasticity of Phase in Biological Clocks. Physical Review Letters, 2015, 115, 218101.	2.9	24
61	Dynamical Systems++ for a Theory of Biological System. , 2015, , 345-354.		Ο
62	Global relationships in fluctuation and response in adaptive evolution. Journal of the Royal Society Interface, 2015, 12, 20150482.	1.5	20
63	Theoretical analysis of discreteness-induced transition in autocatalytic reaction dynamics. Physical Review E, 2015, 91, 022707.	0.8	20
64	Transition to diversification by competition for multiple resources in catalytic reaction networks. Journal of Systems Chemistry, 2015, 6, 5.	1.7	6
65	From globally coupled maps to complex-systems biology. Chaos, 2015, 25, 097608.	1.0	38
66	Gene-specific selective sweeps in bacteria and archaea caused by negative frequency-dependent selection. BMC Biology, 2015, 13, 20.	1.7	42
67	Pluripotency, Differentiation, and Reprogramming: A Gene Expression Dynamics Model with Epigenetic Feedback Regulation. PLoS Computational Biology, 2015, 11, e1004476.	1.5	68
68	Kinetic Memory Based on the Enzyme-Limited Competition. PLoS Computational Biology, 2014, 10, e1003784.	1.5	10
69	Evolution of genetic redundancy: the relevance of complexity in genotype–phenotype mapping. New Journal of Physics, 2014, 16, 063013.	1.2	5
70	Compartmentalization and Cell Division through Molecular Discreteness and Crowding in a Catalytic Reaction Network. Life, 2014, 4, 586-597.	1.1	4
71	Entropy production of a steady-growth cell with catalytic reactions. Physical Review E, 2014, 90, 042714.	0.8	17
72	Baldwin effect under multipeaked fitness landscapes: Phenotypic fluctuation accelerates evolutionary rate. Physical Review E, 2013, 87, 052701.	0.8	12

#	Article	IF	CITATIONS
73	Slow Stochastic Switching by Collective Chaos of Fast Elements. Physical Review Letters, 2013, 111, 144102.	2.9	6
74	Cooperative Adaptive Responses in Gene Regulatory Networks with Many Degrees of Freedom. PLoS Computational Biology, 2013, 9, e1003001.	1.5	22
75	Embedding Responses in Spontaneous Neural Activity Shaped through Sequential Learning. PLoS Computational Biology, 2013, 9, e1002943.	1.5	19
76	Minimal model for stem-cell differentiation. Physical Review E, 2013, 88, 032718.	0.8	25
77	FROM CATALYTIC REACTION NETWORKS TO PROTOCELLS. World Scientific Lecture Notes in Complex Systems, 2013, , 345-358.	0.1	0
78	Challenges for Complex Microbial Ecosystems: Combination of Experimental Approaches with Mathematical Modeling. Microbes and Environments, 2013, 28, 285-294.	0.7	19
79	Epigenetic Feedback Regulation Accelerates Adaptation and Evolution. PLoS ONE, 2013, 8, e61251.	1.1	21
80	Balancing Robustness with Plasticity Through Evolution and Learning. , 2013, , 379-385.		0
81	Associative memory model with spontaneous neural activity. Europhysics Letters, 2012, 98, 48002.	0.7	10
82	Replica symmetry breaking in an adiabatic spin-glass model of adaptive evolution. Europhysics Letters, 2012, 99, 68004.	0.7	8
83	1SC-05 Homeostasis and memory by autonomous regulation of time-scales through enzyme abundances(1SC Frontiers in mathematical methods in biology,Symposium,The 50th Annual Meeting of) Tj ETQq1	Ф.0 .7843	104 rgBT /O
84	Evolution of Robustness and Plasticity under Environmental Fluctuation: Formulation in Terms of Phenotypic Variances. Journal of Statistical Physics, 2012, 148, 687-705.	0.5	21
85	A Dynamical-Systems View of Stem Cell Biology. Science, 2012, 338, 215-217.	6.0	172
86	Correction: Proportionality between variances in gene expression induced by noise and mutation: consequence of evolutionary robustness. BMC Evolutionary Biology, 2012, 12, 240.	3.2	4
87	Phenotypic Plasticity and Robustness: Evolutionary Stability Theory, Gene Expression Dynamics Model, and Laboratory Experiments. Advances in Experimental Medicine and Biology, 2012, 751, 249-278.	0.8	10
88	Adaptation to Optimal Cell Growth through Self-Organized Criticality. Physical Review Letters, 2012, 108, 208103.	2.9	42
89	The Challenges Facing Systemic Approaches in Biology: An Interview with Kunihiko Kaneko. Frontiers in Physiology, 2011, 2, 93.	1.3	4
90	Oscillatory Protein Expression Dynamics Endows Stem Cells with Robust Differentiation Potential. PLoS ONE, 2011, 6, e27232.	1.1	108

93 Proportionality between variances in gene expression induced by noise and mutation: consequence of evolutionary robustness. BMC Evolutionary Biology, 2011, 11, 27. 3.2 94 Characterization of stem cells and cancer cells on the basis of gene expression profile stability, plasticity, and robustness. BioEssays, 2011, 33, 403-413. 1.2 95 Chemophoresis as a driving force for intracellular organization: Theory and application to plasmid partitioning. Biophysics (Nagoya-shi, Japan), 2011, 7, 77-88. 0.4 96 Approach of Complex-Systems Biology to Reproduction and Evolution. The Frontiers Collection, 2011, , 241-259. 0.1 97 discoideum cells/Cell biology, The 48th Annual Meeting of the Biophysical Society of Japan). Seibutsu Butsuri, 2010, 50, S179. 0.0 98 Topological, statistical, and dynamical origins of genetic code. Physics of Life Reviews, 2010, 7, 379-380. 1.5 99 Reproduction of a Protocell by Replication of a Minority Molecule in a Catalytic Reaction Network. Physical Review Letters, 2010, 105, 268103. 2.9 98 Robustness under Euroctional Constraint: The Genetic Network for Temporal Expression in Drosophila 2.9	BT /Over 46 20 42 43 D
93 Proportionality between variances in gene expression induced by noise and mutation: consequence of evolutionary robustness. BMC Evolutionary Biology, 2011, 11, 27. 3.2 94 Characterization of stem cells and cancer cells on the basis of gene expression profile stability, plasticity, and robustness. BioEssays, 2011, 33, 403-413. 1.2 95 Chemophoresis as a driving force for intracellular organization: Theory and application to plasmid or partitioning. Biophysics (Nagoya-shi, Japan), 2011, 7, 77-88. 0.4 96 Approach of Complex-Systems Biology to Reproduction and Evolution. The Frontiers Collection, 2011, , 0.1 0.1 97 3P193 Phase singularity analysis of self-organizing phosphatidylinositol waves in Dictyostelium discoideum cells/Cell biology, The 48th Annual Meeting of the Biophysical Society of Japan). Selbutsu Butsuri, 2010, 50, S179. 0.0 98 Topological, statistical, and dynamical origins of genetic code. Physics of Life Reviews, 2010, 7, 379-380. 1.5 99 Reproduction of a Protocell by Replication of a Minority Molecule in a Catalytic Reaction Network. Physical Review Letters, 2010, 105, 268103. 2.9 100 Robustness under Functional Constraint: The Genetic Network for Temporal Expression in Drosophila 1.5	20 42 43
93 evolutionary robustness. BMC Evolutionary Biology, 2011, 11, 27. 3.2 94 Characterization of stem cells and cancer cells on the basis of gene expression profile stability, plasticity, and robustness. BioEssays, 2011, 33, 403-413. 1.2 95 Chemophoresis as a driving force for intracellular organization: Theory and application to plasmid partitioning. Biophysics (Nagoya-shi, Japan), 2011, 7, 77-88. 0.4 96 Approach of Complex-Systems Biology to Reproduction and Evolution. The Frontiers Collection, 2011, , 241-259. 0.1 97 discoideum cells(Cell biology, The 48th Annual Meeting of the Biophysical Society of Japan). Seibutsu Butsuri, 2010, 50, \$179. 0.0 98 Topological, statistical, and dynamical origins of genetic code. Physics of Life Reviews, 2010, 7, 379-380. 1.5 99 Reproduction of a Protocell by Replication of a Minority Molecule in a Catalytic Reaction Network. Physical Review Letters, 2010, 105, 268103. 2.9 100 Robustness under Functional Constraint: The Genetic Network for Temporal Expression in Drosophila 1.5	42 43
94 plasticity, and robustness. BioEssays, 2011, 33, 403-413. 1.2 95 Chemophoresis as a driving force for intracellular organization: Theory and application to plasmid 0.4 96 Approach of Complex-Systems Biology to Reproduction and Evolution. The Frontiers Collection, 2011, , 241-259. 0.1 97 3P193 Phase singularity analysis of self-organizing phosphatidylinositol waves in Dictyostelium discoideum cells(Cell biology, The 48th Annual Meeting of the Biophysical Society of Japan). Seibutsu 0.0 98 Topological, statistical, and dynamical origins of genetic code. Physics of Life Reviews, 2010, 7, 379-380. 1.5 99 Reproduction of a Protocell by Replication of a Minority Molecule in a Catalytic Reaction Network. Physical Review Letters, 2010, 105, 268103. 2.9 100 Robustness under Functional Constraint: The Genetic Network for Temporal Expression in Drosophila 1.5	43
95 partitioning. Biophysics (Nagoya-shi, Japan), 2011, 7, 77-88. 0.4 96 Approach of Complex-Systems Biology to Reproduction and Evolution. The Frontiers Collection, 2011, , 241-259. 0.1 97 3P193 Phase singularity analysis of self-organizing phosphatidylinositol waves in Dictyostelium discoideum cells(Cell biology, The 48th Annual Meeting of the Biophysical Society of Japan). Seibutsu 0.0 98 Topological, statistical, and dynamical origins of genetic code. Physics of Life Reviews, 2010, 7, 379-380. 1.5 99 Reproduction of a Protocell by Replication of a Minority Molecule in a Catalytic Reaction Network. 2.9 100 Robustness under Functional Constraint: The Genetic Network for Temporal Expression in Drosophila 1.5	
96241-259.0.1973P193 Phase singularity analysis of self-organizing phosphatidylinositol waves in Dictyostelium discoideum cells(Cell biology,The 48th Annual Meeting of the Biophysical Society of Japan). Seibutsu0.097Topological, statistical, and dynamical origins of genetic code. Physics of Life Reviews, 2010, 7, 379-380.1.598Topological, statistical, and dynamical origins of genetic code. Physics of Life Reviews, 2010, 7, 379-380.1.599Reproduction of a Protocell by Replication of a Minority Molecule in a Catalytic Reaction Network. Physical Review Letters, 2010, 105, 268103.2.9100Robustness under Functional Constraint: The Genetic Network for Temporal Expression in Drosophila1.5)
97 discoideum cells(Cell biology, The 48th Annual Meeting of the Biophysical Society of Japan). Seibutsu 0.0 98 Topological, statistical, and dynamical origins of genetic code. Physics of Life Reviews, 2010, 7, 379-380. 1.5 99 Reproduction of a Protocell by Replication of a Minority Molecule in a Catalytic Reaction Network. 2.9 100 Robustness under Functional Constraint: The Genetic Network for Temporal Expression in Drosophila 1.5	
99 Reproduction of a Protocell by Replication of a Minority Molecule in a Catalytic Reaction Network. 2.9 99 Physical Review Letters, 2010, 105, 268103. 2.9 100 Robustness under Functional Constraint: The Genetic Network for Temporal Expression in Drosophila 1.5	C
Physical Review Letters, 2010, 105, 268103.	L
	24
	17
101 Self-organized criticality of a catalytic reaction network under flow. Physical Review E, 2009, 80, 0.8 0.8	16
102Statistical-mechanical study of evolution of robustness in noisy environments. Physical Review E, 2009, 80, 051919.0.8	3
 Funnel Landscape and Mutational Robustness as a Result of Evolution under Thermal Noise. Physical Review Letters, 2009, 102, 148101. 	26
104How selection affects phenotypic fluctuation. Molecular Systems Biology, 2009, 5, 264.3.2	51
Relationship among phenotypic plasticity, phenotypic fluctuations, robustness, and evolvability; Waddington's legacy revisited under the spirit of Einstein. Journal of Biosciences, 2009, 34, 529-542. 0.5	20
106Noisy cell growth rate leads to fluctuating protein concentration in bacteria. Physical Biology, 2009, 6, 036015.0.8	51
107 Chaotic expression dynamics implies pluripotency: when theory and experiment meet. Biology Direct, 1.9 2009, 4, 17.	

108 2P-246 A statistical-mechanical study of evolution of robustness in noisy environment(Mathematical) Tj ETQq0 0 0 rgBT /Overlock 10 Tf

7

#	Article	IF	CITATIONS
109	A statistical-mechanical study of evolution of robustness: An approach from two-temperature models. Journal of Physics: Conference Series, 2009, 197, 012003.	0.3	1
110	Regulative differentiation as bifurcation of interacting cell population. Journal of Theoretical Biology, 2008, 253, 779-787.	0.8	22
111	Consistency principle in biological dynamical systems. Theory in Biosciences, 2008, 127, 195-204.	0.6	9
112	Developmental potential for morphogenesis in vivo and in vitro. Journal of Experimental Zoology Part B: Molecular and Developmental Evolution, 2008, 310B, 492-503.	0.6	13
113	Shaping robust system through evolution. Chaos, 2008, 18, 026112.	1.0	14
114	A Generic Mechanism for Adaptive Growth Rate Regulation. PLoS Computational Biology, 2008, 4, e3.	1.5	63
115	Network Evolution of Body Plans. PLoS ONE, 2008, 3, e2772.	1.1	62
116	Evolution equation of phenotype distribution: General formulation and application to error catastrophe. Physical Review E, 2007, 75, 061909.	0.8	43
117	Discreteness-induced transition in catalytic reaction networks. Physical Review E, 2007, 76, 041915.	0.8	17
118	Evolution of Robustness to Noise and Mutation in Gene Expression Dynamics. PLoS ONE, 2007, 2, e434.	1.1	135
119	Question 9: Minority Control and Genetic Takeover. Origins of Life and Evolution of Biospheres, 2007, 37, 465-468.	0.8	2
120	Question 8: From a Set of Chemical Reactions to Reproducing Cells. Origins of Life and Evolution of Biospheres, 2007, 37, 449-453.	0.8	11
121	On Compatible Condition for Morphogenetic Diversity and Recursive Production of Multicellular Organisms. Seibutsu Butsuri, 2007, 47, 029-035.	0.0	0
122	Adaptive Response of a Gene Network to Environmental Changes by Fitness-Induced Attractor Selection. PLoS ONE, 2006, 1, e49.	1.1	237
123	1P490 A Mathematical Model of Cell Size Homeostasis(24. Mathematical biology,Poster) Tj ETQq1 1 0.784314 rg	gBT /Overl	ock 10 Tf 50
124	An evolutionary relationship between genetic variation and phenotypic fluctuation. Journal of Theoretical Biology, 2006, 240, 78-86.	0.8	48
125	Evolutionary origin of power-laws in a biochemical reaction network: Embedding the distribution of abundance into topology. Physical Review E, 2006, 73, 011912.	0.8	15
126	2P459 Molecular Deficiency Induced Transitions in Catalytic Reaction Network(50. Non-equilibrium) Tj ETQq0 0 C) rgBT /Ov 0.0	erlock 10 Tf 5 0

Butsuri, 2006, 46, S410.

#	Article	IF	CITATIONS
127	On Recursive Production and Evolvability of Cells: Catalytic Reaction Network Approach. Advances in Chemical Physics, 2005, , 543-598.	0.3	14
128	Selection of initial conditions for recursive production of multicellular organisms. Journal of Theoretical Biology, 2005, 233, 501-514.	0.8	11
129	Discreteness-induced stochastic steady state in reaction diffusion systems: self-consistent analysis and stochastic simulations. Physica D: Nonlinear Phenomena, 2005, 205, 87-99.	1.3	16
130	Dynamical systems basis of metamorphosis: diversity and plasticity of cellular states in reaction diffusion network. Journal of Theoretical Biology, 2005, 234, 173-186.	0.8	8
131	Ubiquity of log-normal distributions in intra-cellular reaction dynamics. Biophysics (Nagoya-shi,) Tj ETQq1 1 0.784	314 rgBT 0.4	/Overlock 10
132	Magic Number7±2in Networks of Threshold Dynamics. Physical Review Letters, 2005, 94, 058102.	2.9	10
133	UNIVERSAL STATISTICS OF CELLS WITH RECURSIVE PRODUCTION. World Scientific Lecture Notes in Complex Systems, 2005, , 155-176.	0.1	0
134	Molecular discreteness in reaction-diffusion systems yields steady states not seen in the continuum limit. Physical Review E, 2004, 70, 020901.	0.8	39
135	Relaxation to Equilibrium Can Be Hindered by Transient Dissipative Structures. Physical Review Letters, 2004, 92, 258302.	2.9	10
136	Bottleneck in Energy Relaxation and its Self-Organization. AIP Conference Proceedings, 2004, , .	0.3	0
137	Complex systems biology: exploring universal statistical and dynamical features in cellular processes. Genome Informatics, 2004, 15, 302-3.	0.4	0
138	Robust development as a consequence of generated positional information. Journal of Theoretical Biology, 2003, 224, 413-435.	0.8	19
139	How fast elements can affect slow dynamics. Physica D: Nonlinear Phenomena, 2003, 180, 1-16.	1.3	26
140	Coupled map gas: structure formation and dynamics of interacting motile elements with internal dynamics. Physica D: Nonlinear Phenomena, 2003, 181, 197-214.	1.3	30
141	Chaotic itinerancy. Chaos, 2003, 13, 926-936.	1.0	215
142	Zipf's Law in Gene Expression. Physical Review Letters, 2003, 90, 088102.	2.9	213
143	Bifurcation cascade as chaotic itinerancy with multiple time scales. Chaos, 2003, 13, 1041-1056.	1.0	14
144	Recursiveness, switching, and fluctuations in a replicating catalytic network. Physical Review E, 2003, 68, 031909.	0.8	28

#	Article	IF	CITATIONS
145	Spontaneous structure formation in a network of dynamic elements. Physical Review E, 2003, 67, 046226.	0.8	45
146	On the relation between fluctuation and response in biological systems. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 14086-14090.	3.3	137
147	Alteration of Chemical Concentrations through Discreteness-Induced Transitions in Small Autocatalytic Systems. Journal of the Physical Society of Japan, 2003, 72, 62-68.	0.7	19
148	From Coupled Dynamical Systems to Biological Irreversibility. Advances in Chemical Physics, 2003, , 53-73.	0.3	0
149	Dominance of Milnor attractors in globally coupled dynamical systems with more than7±2degrees of freedom. Physical Review E, 2002, 66, 055201.	0.8	23
150	PATTERN DYNAMICS OF A MULTI-COMPONENT REACTION–DIFFUSION SYSTEM: DIFFERENTIATION OF REPLICATING SPOTS. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 2002, 12, 2579-2598.	0.7	5
151	Origin of multicellular organisms as an inevitable consequence of dynamical systems. The Anatomical Record, 2002, 268, 327-342.	2.3	48
152	On a Kinetic Origin of Heredity: Minority Control in a Replicating System with Mutually Catalytic Molecules. Journal of Theoretical Biology, 2002, 214, 563-576.	0.8	44
153	Functional dynamics. Physica D: Nonlinear Phenomena, 2001, 149, 174-196.	1.3	15
154	Inaccessibility and undecidability in computation, geometry, and dynamical systems. Physica D: Nonlinear Phenomena, 2001, 155, 1-33.	1.3	8
155	Theory of Robustness of Irreversible Differentiation in a Stem Cell System: Chaos Hypothesis. Journal of Theoretical Biology, 2001, 209, 395-416.	0.8	91
156	Spontaneous Structure Formation in a Network of Chaotic Units with Variable Connection Strengths. Physical Review Letters, 2001, 88, 028701.	2.9	108
157	Relaxation, the Boltzmann-Jeans conjecture, and chaos. Physical Review E, 2001, 64, 055205.	0.8	13
158	Transitions Induced by the Discreteness of Molecules in a Small Autocatalytic System. Physical Review Letters, 2001, 86, 2459-2462.	2.9	83
159	Sensitive boundary condition dependence of noise-sustained structure. Physical Review E, 2001, 63, 036218.	0.8	3
160	Natural language from function dynamics. BioSystems, 2000, 57, 1-11.	0.9	3
161	Functional dynamics. I: Articulation process. Physica D: Nonlinear Phenomena, 2000, 138, 225-250.	1.3	24
162	Open Problems in Artificial Life. Artificial Life, 2000, 6, 363-376.	1.0	235

10

#	Article	IF	CITATIONS
163	Energy Storage in a Hamiltonian System in Partial Contact with a Heat Bath. Journal of the Physical Society of Japan, 2000, 69, 1255-1258.	0.7	12
164	Evolution of Genetic Codes through Isologous Diversification of Cellular States. Artificial Life, 2000, 6, 283-305.	1.0	12
165	Origin of Complexity in Multicellular Organisms. Physical Review Letters, 2000, 84, 6130-6133.	2.9	42
166	Sympatric speciation: compliance with phenotype diversification from a single genotype. Proceedings of the Royal Society B: Biological Sciences, 2000, 267, 2367-2373.	1.2	26
167	Noiseless Collective Motion out of Noisy Chaos. Physical Review Letters, 1999, 82, 4424-4427.	2.9	45
168	Isologous Diversification for Robust Development of Cell Society. Journal of Theoretical Biology, 1999, 199, 243-256.	0.8	79
169	Emergence of Rules in Cell Society: Differentiation, Hierarchy, and Stability. Bulletin of Mathematical Biology, 1998, 60, 659-687.	0.9	78
170	Tongue-like bifurcation structures of the mean-field dynamics in a network of chaotic elements. Physica D: Nonlinear Phenomena, 1998, 124, 177-200.	1.3	28
171	On the strength of attractors in a high-dimensional system: Milnor attractor network, robust global attraction, and noise-induced selection. Physica D: Nonlinear Phenomena, 1998, 124, 322-344.	1.3	81
172	Geometry of Undecidable Systems. Progress of Theoretical Physics, 1998, 99, 885-890.	2.0	7
173	Emergence of Multicellular Organisms with Dynamic Differentiation and Spatial Pattern. Artificial Life, 1998, 4, 79-93.	1.0	46
174	Collective Chaos. Physical Review Letters, 1998, 81, 4116-4119.	2.9	66
175	Dominance of Milnor Attractors and Noise-Induced Selection in a Multiattractor System. Physical Review Letters, 1997, 78, 2736-2739.	2.9	106
176	Isologous diversification: A theory of cell differentiation. Bulletin of Mathematical Biology, 1997, 59, 139-196.	0.9	20
177	Isologous diversification: A theory of cell differentiation. Bulletin of Mathematical Biology, 1997, 59, 139-196.	0.9	94
178	Fractalization of a torus as a strange nonchaotic attractor. Physical Review E, 1996, 54, 6114-6124.	0.8	124
179	Pattern dynamics of a coupled map lattice for open flow. Physica D: Nonlinear Phenomena, 1995, 86, 428-455.	1.3	50
180	Evolution of Cooperation, Differentiation, Complexity, and Diversity in an Iterated Three-Person Game. Artificial Life, 1995, 2, 293-304.	1.0	22

#	Article	IF	CITATIONS
181	Imitation games. Physica D: Nonlinear Phenomena, 1994, 75, 328-342.	1.3	27
182	Relevance of dynamic clustering to biological networks. Physica D: Nonlinear Phenomena, 1994, 75, 55-73.	1.3	200
183	Cell division, differentiation and dynamic clustering. Physica D: Nonlinear Phenomena, 1994, 75, 89-102.	1.3	85
184	Information cascade with marginal stability in a network of chaotic elements. Physica D: Nonlinear Phenomena, 1994, 77, 456-472.	1.3	50
185	Chaos as a Source of Complexity and Diversity in Evolution. Artificial Life, 1993, 1, 163-177.	1.0	19
186	Overview of coupled map lattices. Chaos, 1992, 2, 279-282.	1.0	326
187	Mean field fluctuation of a network of chaotic elements. Physica D: Nonlinear Phenomena, 1992, 55, 368-384.	1.3	131
188	Homeochaos: dynamics stability of a symbiotic network with population dynamics and evolving mutation rates. Physica D: Nonlinear Phenomena, 1992, 56, 406-429.	1.3	70
189	Globally coupled circle maps. Physica D: Nonlinear Phenomena, 1991, 54, 5-19.	1.3	148
190	Clustering, coding, switching, hierarchical ordering, and control in a network of chaotic elements. Physica D: Nonlinear Phenomena, 1990, 41, 137-172.	1.3	754
191	Supertransients, spatiotemporal intermittency and stability of fully developed spatiotemporal chaos. Physics Letters, Section A: General, Atomic and Solid State Physics, 1990, 149, 105-112.	0.9	122
192	Chaotic but regular posi-nega switch among coded attractors by cluster-size variation. Physical Review Letters, 1989, 63, 219-223.	2.9	251
193	Pattern dynamics in spatiotemporal chaos. Physica D: Nonlinear Phenomena, 1989, 34, 1-41.	1.3	518
194	Are Attractors Relevant to Turbulence?. Physical Review Letters, 1988, 60, 2715-2718.	2.9	234
195	Lyapunov analysis and information flow in coupled map lattices. Physica D: Nonlinear Phenomena, 1986, 23, 436-447.	1.3	226