Marcel Amills

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6701796/publications.pdf

Version: 2024-02-01

		117453	1	.89595	
158	3,687	34		50	
papers	citations	h-index		g-index	
			_		1
166	166	166		3335	
all docs	docs citations	times ranked		citing authors	
				3	

#	Article	IF	CITATIONS
1	Design and Characterization of a 52K SNP Chip for Goats. PLoS ONE, 2014, 9, e86227.	1.1	220
2	Copy number variation in the genomes of domestic animals. Animal Genetics, 2012, 43, 503-517.	0.6	116
3	Signatures of selection and environmental adaptation across the goat genome post-domestication. Genetics Selection Evolution, 2018, 50, 57.	1.2	114
4	Identification of three single nucleotide polymorphisms in the chicken insulin-like growth factor 1 and 2 genes and their associations with growth and feeding traits. Poultry Science, 2003, 82, 1485-1493.	1.5	109
5	Integrating Y-Chromosome, Mitochondrial, and Autosomal Data to Analyze the Origin of Pig Breeds. Molecular Biology and Evolution, 2009, 26, 2061-2072.	3.5	103
6	Muscle transcriptomic profiles in pigs with divergent phenotypes for fatness traits. BMC Genomics, 2010, 11, 372.	1.2	103
7	Identification of carcass and meat quality quantitative trait loci in a Landrace pig population selected for growth and leanness1. Journal of Animal Science, 2005, 83, 293-300.	0.2	80
8	Goat domestication and breeding: a jigsaw of historical, biological and molecular data with missing pieces. Animal Genetics, 2017, 48, 631-644.	0.6	77
9	Genome-wide patterns of homozygosity provide clues about the population history and adaptation of goats. Genetics Selection Evolution, 2018, 50, 59.	1.2	76
10	A genome-wide perspective about the diversity and demographic history of seven Spanish goat breeds. Genetics Selection Evolution, 2016, 48, 52.	1.2	63
11	Donkey genomes provide new insights into domestication and selection for coat color. Nature Communications, 2020, 11, 6014.	5.8	63
12	The major hystocompatibility complex of ruminants. OIE Revue Scientifique Et Technique, 1998, 17, 108-120.	0.5	63
13	Porcine intramuscular fat content and composition are regulated by quantitative trait loci with muscle-specific effects1. Journal of Animal Science, 2011, 89, 2963-2971.	0.2	56
14	Polymorphism of the pig <i>acetylâ€coenzyme A carboxylase α</i> gene is associated with fatty acid composition in a Duroc commercial line. Animal Genetics, 2009, 40, 410-417.	0.6	54
15	Hotspots of recent hybridization between pigs and wild boars in Europe. Scientific Reports, 2018, 8, 17372.	1.6	53
16	Gene frequencies of caprine αs1-casein polymorphism in Spanish goat breeds. Small Ruminant Research, 1996, 20, 215-221.	0.6	52
17	Population structure of eleven Spanish ovine breeds and detection of selective sweeps with BayeScan and hapFLK. Scientific Reports, 2016, 6, 27296.	1.6	52
18	Strong phylogeographic relationships among three goat breeds from the Canary Islands. Journal of Dairy Research, 2004, 71, 257-262.	0.7	51

#	Article	IF	Citations
19	Mapping of quantitative trait loci for cholesterol, LDL, HDL, and triglyceride serum concentrations in pigs. Physiological Genomics, 2008, 35, 199-209.	1.0	51
20	Whole-Genome Resequencing of Worldwide Wild and Domestic Sheep Elucidates Genetic Diversity, Introgression, and Agronomically Important Loci. Molecular Biology and Evolution, 2022, 39, .	3.5	50
21	Paternal Origins and Migratory Episodes of Domestic Sheep. Current Biology, 2020, 30, 4085-4095.e6.	1.8	49
22	Mitochondrial DNA diversity and origins of South and Central American goats. Animal Genetics, 2009, 40, 315-322.	0.6	46
23	RNA-seq based detection of differentially expressed genes in the skeletal muscle of Duroc pigs with distinct lipid profiles. Scientific Reports, 2017, 7, 40005.	1.6	46
24	Differential expression of mRNA isoforms in the skeletal muscle of pigs with distinct growth and fatness profiles. BMC Genomics, 2018, 19, 145.	1.2	43
25	Isolation of genomic DNA from milk samples by using Chelex resin. Journal of Dairy Research, 1997, 64, 231-238.	0.7	42
26	QTL mapping for teat number in an Iberian-by-Meishan pig intercross. Animal Genetics, 2005, 36, 050823030348002-???.	0.6	40
27	Association of CA repeat polymorphism at intron 1 of insulin-like growth factor (IGF-I) gene with circulating IGF-I concentration, growth, and fatness in swine. Physiological Genomics, 2007, 31, 236-243.	1.0	40
28	Goat Acetyl-Coenzyme A Carboxylase \hat{l}_{\pm} : Molecular Characterization, Polymorphism, and Association with Milk Traits. Journal of Dairy Science, 2007, 90, 1039-1043.	1.4	40
29	A bi-dimensional genome scan for prolificacy traits in pigs shows the existence of multiple epistatic QTL. BMC Genomics, 2009, 10, 636.	1.2	40
30	Short communication: Effect of $\hat{l}\pm S1$ -casein (CSN1S1) and \hat{l}^2 -casein (CSN3) genotypes on milk composition in Murciano-Granadina goats. Journal of Dairy Science, 2009, 92, 2960-2964.	1.4	39
31	Canine Leishmaniasis Progression is Associated with Vitamin D Deficiency. Scientific Reports, 2017, 7, 3346.	1.6	38
32	Segregation of Regulatory Polymorphisms with Effects on the Gluteus Medius Transcriptome in a Purebred Pig Population. PLoS ONE, 2012, 7, e35583.	1.1	38
33	Malic enzyme 1 genotype is associated with backfat thickness and meat quality traits in pigs. Animal Genetics, 2006, 37, 28-32.	0.6	37
34	Nested PCR allows the characterization of TaqI and PstI RFLPs in the second exon of the caprine MHC class II DRB gene. Veterinary Immunology and Immunopathology, 1995, 48, 313-321.	0.5	35
35	Estimating the frequency of Asian cytochrome B haplotypes in standard European and local Spanish pig breeds. Genetics Selection Evolution, 2004, 36, 97-104.	1.2	35
36	Joint QTL mapping and gene expression analysis identify positional candidate genes influencing pork quality traits. Scientific Reports, 2017, 7, 39830.	1.6	35

#	Article	IF	Citations
37	Patterns of homozygosity in insular and continental goat breeds. Genetics Selection Evolution, 2018, 50, 56.	1.2	33
38	Low diversity in the major histocompatibility complex class II DRB1 gene of the Spanish ibex, Capra pyrenaica. Heredity, 2004, 93, 266-272.	1.2	32
39	Mapping of the porcine oestrogen receptor 2 gene and association study with litter size in Iberian pigs. Animal Genetics, 2004, 35, 242-244.	0.6	31
40	Bayes factor analyses of heritability for serum and muscle lipid traits in Duroc pigs1. Journal of Animal Science, 2010, 88, 2246-2254.	0.2	31
41	Association between the GHR, GHRHR, and IGF1 gene polymorphisms and milk yield and quality traits in Sarda sheep. Journal of Dairy Science, 2018, 101, 9978-9986.	1.4	31
42	Bayesian analysis of quantitative trait loci for boar taint in a Landrace outbred population1. Journal of Animal Science, 2005, 83, 301-307.	0.2	30
43	Mining the pig genome to investigate the domestication process. Heredity, 2014, 113, 471-484.	1.2	30
44	Canine Mhc DRB1 genotyping by PCR–RFLP analysis. Animal Genetics, 1997, 28, 41-45.	0.6	27
45	Reduced IL-2 and IL-4 mRNA Expression in CD4+ T Cells from Bovine Leukemia Virus-Infected Cows with Persistent Lymphocytosis. Virology, 2002, 304, 1-9.	1.1	27
46	Association between the polymorphism of the goat stearoyl-CoA desaturase 1 (SCD1) gene and milk fatty acid composition in Murciano-Granadina goats. Journal of Dairy Science, 2010, 93, 4332-4339.	1.4	27
47	Domestic Pigs in Africa. African Archaeological Review, 2013, 30, 73-82.	0.8	27
48	Comparing the mRNA expression profile and the genetic determinism of intramuscular fat traits in the porcine gluteus medius and longissimus dorsi muscles. BMC Genomics, 2019, 20, 170.	1.2	27
49	A High Throughput Genotyping Approach Reveals Distinctive Autosomal Genetic Signatures for European and Near Eastern Wild Boar. PLoS ONE, 2013, 8, e55891.	1.1	27
50	Polymorphism of the pig 2,4-dienoyl CoA reductase 1 gene (DECR1) and its association with carcass and meat quality traits1. Journal of Animal Science, 2005, 83, 493-498.	0.2	26
51	Variations at regulatory regions of the milk protein genes are associated with milk traits and coagulation properties in the Sarda sheep. Animal Genetics, 2016, 47, 717-726.	0.6	25
52	Effects of \hat{l}_{\pm} sub>s1-casein (<i>CSN1S1</i>) and \hat{l}_{\pm} casein (<i>CSN3</i>) genotypes on milk coagulation properties in Murciano-Granadina goats. Journal of Dairy Research, 2011, 78, 32-37.	0.7	24
53	A genome-wide association analysis for porcine serum lipid traits reveals the existence of age-specific genetic determinants. BMC Genomics, 2014, 15, 758.	1.2	24
54	A mitochondrial analysis reveals distinct founder effect signatures in Canarian and Balearic goats. Animal Genetics, 2015, 46, 452-456.	0.6	24

#	Article	IF	Citations
55	Integrating genome-wide co-association and gene expression to identify putative regulators and predictors of feed efficiency in pigs. Genetics Selection Evolution, 2019, 51, 48.	1.2	24
56	A PCR-RFLP typing method for the caprine Mhc class II DRB gene. Veterinary Immunology and Immunopathology, 1996, 55, 255-260.	0.5	23
57	Genomic architecture of heritability and genetic correlations for intramuscular and back fat contents in Duroc pigs1. Journal of Animal Science, 2013, 91, 623-632.	0.2	23
58	Genetics of serum and muscle lipids in pigs. Animal Genetics, 2013, 44, 609-619.	0.6	21
59	A Flexible Bayesian Model for Testing for Transmission Ratio Distortion. Genetics, 2014, 198, 1357-1367.	1.2	21
60	Nutrient supply affects the mRNA expression profile of the porcine skeletal muscle. BMC Genomics, 2017, 18, 603.	1.2	21
61	Analyzing the genomic and transcriptomic architecture of milk traits in Murciano-Granadina goats. Journal of Animal Science and Biotechnology, 2020, $11,35.$	2.1	21
62	Cytokine mRNA expression in B cells from bovine leukemia virus-infected cattle with persistent lymphocytosis. Cytokine, 2004, 28, 25-28.	1.4	20
63	Short Communication: Identification of Two Polymorphisms in the Goat Lipoprotein Lipase Gene and Their Association with Milk Production Traits. Journal of Dairy Science, 2007, 90, 3012-3017.	1.4	20
64	Effect of α _{s1} -casein (<i>CSN1S1</i>) genotype on milk CSN1S1 content in Malagueña and Murciano-Granadina goats. Journal of Dairy Research, 2008, 75, 481-484.	0.7	20
65	The footprint of recent and strong demographic decline in the genomes of Mangalitza pigs. Animal, 2019, 13, 2440-2446.	1.3	18
66	Identification of a single nucleotide polymorphism at intron 16 of the caprine Acyl-Coenzyme A: diacylglycerol acyltransferase 1 (DGAT1) gene. Journal of Dairy Research, 2007, 74, 47-51.	0.7	17
67	Positive selection on mammalian MHC-DQ genes revisited from a multispecies perspective. Genes and Immunity, 2008, 9, 651-658.	2.2	17
68	Pig melatonin receptor 1a (MTNR1A) genotype is associated with seasonal variation of sow litter size. Animal Reproduction Science, 2009, 115, 317-322.	0.5	17
69	The Southwestern fringe of Europe as an important reservoir of caprine biodiversity. Genetics Selection Evolution, 2015, 47, 86.	1.2	17
70	Co-expression network analysis predicts a key role of microRNAs in the adaptation of the porcine skeletal muscle to nutrient supply. Journal of Animal Science and Biotechnology, 2020, 11, 10.	2.1	17
71	Quantitative trait loci analysis of a <scp>D</scp> uroc commercial population highlights differences in the genetic determination of meat quality traits at two different muscles. Animal Genetics, 2012, 43, 800-804.	0.6	16
72	<i><scp>DECR</scp>1</i> and <i><scp>ME</scp>1</i> genotypes are associated with lipid composition traits in <scp>D</scp> uroc pigs. Journal of Animal Breeding and Genetics, 2014, 131, 46-52.	0.8	16

#	Article	IF	CITATIONS
73	Romanian wild boars and Mangalitza pigs have a European ancestry and harbour genetic signatures compatible with past population bottlenecks. Scientific Reports, 2016, 6, 29913.	1.6	16
74	Dissection of ancestral genetic contributions to Creole goat populations. Animal, 2018, 12, 2017-2026.	1.3	16
75	VarGoats project: a dataset of 1159 whole-genome sequences to dissect Capra hircus global diversity. Genetics Selection Evolution, 2021, 53, 86.	1.2	16
76	Mapping and tissue mRNA expression analysis of the pig solute carrier 27A (SLC27A) multigene family. Gene, 2013, 515, 220-223.	1.0	15
77	East African pigs have a complex Indian, Far Eastern and Western ancestry. Animal Genetics, 2015, 46, 433-436.	0.6	15
78	Nucleotide sequence and polymorphism of the caprine major histocompatibility complex class II (-) gene. Molecular Immunology, 2005, 42, 375-379.	1.0	14
79	Application of the microarray technology to the transcriptional analysis of muscle phenotypes in pigs. Animal Genetics, 2014, 45, 311-321.	0.6	14
80	A genomeâ€wide association analysis for carcass traits in a commercial Duroc pig population. Animal Genetics, 2017, 48, 466-469.	0.6	14
81	Porcine Y-chromosome variation is consistent with the occurrence of paternal gene flow from non-Asian to Asian populations. Heredity, 2018, 120, 63-76.	1.2	14
82	About the existence of common determinants of gene expression in the porcine liver and skeletal muscle. BMC Genomics, 2019, 20, 518.	1.2	14
83	Plasma leptin levels in pigs with different leptin and leptin receptor genotypes. Journal of Animal Breeding and Genetics, 2008, 125, 228-233.	0.8	13
84	Genetic variation at the goat hormone-sensitive lipase (<i>LIPE</i>) gene and its association with milk yield and composition. Journal of Dairy Research, 2010, 77, 190-198.	0.7	13
85	Pleiotropic effects of the goat prolactin receptor genotype on milk fatty acid composition. Domestic Animal Endocrinology, 2010, 39, 85-89.e2.	0.8	13
86	Ancient DNA sheds light on the ancestry of pre-hispanic Canarian pigs. Genetics Selection Evolution, 2015, 47, 40.	1.2	13
87	Role of AMPK signalling pathway during compensatory growth in pigs. BMC Genomics, 2018, 19, 682.	1.2	13
88	Assignment of the fatty acid Coenzyme A ligase, long chain 2 (FACL2) gene to porcine chromosome 15. Animal Genetics, 2004, 35, 245-245.	0.6	12
89	Appearance, flavor, and texture attributes of pig dry-cured hams have a complex polygenic genomic architecture1. Journal of Animal Science, 2013, 91, 1051-1058.	0.2	12
90	Genetic variation at the caprinelactalbumin, alpha(LALBA) gene and its association with milk lactose concentration. Animal Genetics, 2014, 45, 612-613.	0.6	12

#	Article	IF	CITATIONS
91	Investigating the genetic regulation of the expression of 63 lipid metabolism genes in the pig skeletal muscle. Animal Genetics, 2017, 48, 606-610.	0.6	12
92	A genome-wide association analysis for body, udder, and leg conformation traits recorded in Murciano-Granadina goats. Journal of Dairy Science, 2020, 103, 11605-11617.	1.4	12
93	Polymorphism of the Goat Agouti Signaling Protein Gene and Its Relationship with Coat Color in Italian and Spanish Breeds. Biochemical Genetics, 2011, 49, 523-532.	0.8	11
94	Revisión: E1 polimorfismo del gen de la caseina αs1 caprina y su efecto sobre la producción, la composición y las propiedades tecnológicas de la leche y sobre la fabricación y la maduración del queso. Food Science and Technology International, 1998, 4, 217-235.	1.1	10
95	Assignment of the 2,4-dienoyl-CoA reductase (DECR) gene to porcine chromosome 4. Animal Genetics, 2002, 33, 164-165.	0.6	10
96	The Application of Genomic Technologies to Investigate the Inheritance of Economically Important Traits in Goats. Advances in Biology, 2014, 2014, 1-13.	1.2	10
97	Detecting the existence of gene flow between Spanish and North African goats through a coalescent approach. Scientific Reports, 2016, 6, 38935.	1.6	10
98	Inferring the demographic history of a highly endangered goat breed through the analysis of nuclear and mitochondrial genetic signatures. Small Ruminant Research, 2012, 104, 78-84.	0.6	9
99	Differential distribution of Y-chromosome haplotypes in Swiss and Southern European goat breeds. Scientific Reports, 2017, 7, 16161.	1.6	9
100	Comparing the diversity of the casein genes in the Asian mouflon and domestic sheep. Animal Genetics, 2020, 51, 470-475.	0.6	9
101	Structural characterization of the caprine major histocompatibility complex class II DQB1 (Cahi-DQB1) gene. Molecular Immunology, 2004, 41, 843-846.	1.0	8
102	Sequence Analysis of Goat Major Histocompatibility Complex Class I Genes. Journal of Dairy Science, 2008, 91, 814-817.	1.4	8
103	The analysis of mitochondrial data indicates the existence of population substructure in Karayaka sheep. Small Ruminant Research, 2018, 162, 25-29.	0.6	8
104	Expression patterns and genetic variation of the ovine skeletal muscle transcriptome of sheep from five Spanish meat breeds. Scientific Reports, 2018, 8, 10486.	1.6	8
105	Low genomeâ€wide homozygosity in 11 Spanish ovine breeds. Animal Genetics, 2019, 50, 501-511.	0.6	8
106	A genome-wide analysis of copy number variation in Murciano-Granadina goats. Genetics Selection Evolution, 2020, 52, 44.	1.2	8
107	An association analysis between polymorphisms of the pig solute carrier family 27A (SLC27A), member 1 and 4 genes and serum and muscle lipid traits. Livestock Science, 2013, 152, 143-146.	0.6	7
108	Technical note: Advantages and limitations of authenticating Palmera goat dairy products by pyrosequencing the melanocortin 1 receptor (MC1R) gene. Journal of Dairy Science, 2014, 97, 7293-7297.	1.4	7

#	Article	IF	CITATIONS
109	Analysing the Expression of Eight Clock Genes in Five Tissues From Fasting and Fed Sows. Frontiers in Genetics, 2018, 9, 475.	1.1	7
110	Genomic analysis of the origins of extant casein variation in goats. Journal of Dairy Science, 2019, 102, 5230-5241.	1.4	7
111	An association analysis for 14 candidate genes mapping to meat quality quantitative trait loci in a Duroc pig population reveals that the ATP 1A2 genotype is highly associated with muscle electric conductivity. Animal Genetics, 2020, 51, 95-100.	0.6	7
112	An age-dependent association between a leptin C3469T single nucleotide polymorphism and intramuscular fat content in pigs. Livestock Science, 2009, 121, 335-338.	0.6	6
113	Short communication: Genetic variability in the predicted microRNA target sites of caprine casein genes. Journal of Dairy Science, 2010, 93, 1749-1753.	1.4	6
114	Association analysis with lipid traits of 2 candidate genes (LRP12 and TRIB1) mapping to a SSC4 QTL for serum triglyceride concentration in pigs1. Journal of Animal Science, 2013, 91, 1531-1537.	0.2	6
115	Detecting the footprint of selection on the genomes of Murcianoâ€Granadina goats. Animal Genetics, 2021, 52, 683-693.	0.6	6
116	Assessing the levels of intraspecific admixture and interspecific hybridization in Iberian wild goats (<i>Capra pyrenaica</i>). Evolutionary Applications, 2021, 14, 2618-2634.	1.5	6
117	Pig HDL-binding protein (HDLBP) genotype is associated with intramuscular fat percentage. Livestock Science, 2009, 126, 298-301.	0.6	5
118	Quantitative trait loci for fatness at growing and reproductive stages in Iberianâ€f×â€fMeishan F ₂ sows. Animal Genetics, 2011, 42, 548-551.	0.6	5
119	Polymorphisms of the cryptochrome 2 and mitoguardin 2 genes are associated with the variation of lipid-related traits in Duroc pigs. Scientific Reports, 2019, 9, 9025.	1.6	5
120	Discovery and annotation of novel microRNAs in the porcine genome by using a semi-supervised transductive learning approach. Genomics, 2020, 112, 2107-2118.	1.3	5
121	Genomic patterns of homozygosity and inbreeding depression in Murciano-Granadina goats. Journal of Animal Science and Biotechnology, 2022, 13, 35.	2.1	5
122	Geographical contrasts of Yâ€chromosomal haplogroups from wild and domestic goats reveal ancient migrations and recent introgressions. Molecular Ecology, 2022, 31, 4364-4380.	2.0	5
123	An Association Analysis Between a Silent C558T Polymorphism at the Pig Vascular Cell Adhesion Molecule 1 Locus and Sow Reproduction and Piglet Survivability Traits. Reproduction in Domestic Animals, 2008, 43, 542-546.	0.6	4
124	Analysing the diversity of the caprine melanocortin 1 receptor (MC1R) in goats with distinct geographic origins. Small Ruminant Research, 2016, 145, 7-11.	0.6	4
125	Estimating the copy number of the agouti signaling protein (ASIP) gene in goat breeds with different color patterns. Livestock Science, 2021, 246, 104440.	0.6	4
126	Variability in porcine microRNA genes and its association with mRNA expression and lipid phenotypes. Genetics Selection Evolution, 2021, 53, 43.	1.2	4

#	Article	IF	CITATIONS
127	Evolution of inbreeding: a gaze into five Italian beef cattle breeds history. PeerJ, 2021, 9, e12049.	0.9	4
128	Primer-directed synthesis of a molecular weight marker. Genetic Analysis, Techniques and Applications, 1996, 13, 147-149.	1.5	3
129	Short Communication: An association analysis between one missense polymorphism at the <i>SREBF1</i> gene and milk yield and composition traits in goats. Canadian Journal of Animal Science, 2012, 92, 167-173.	0.7	3
130	A Genomic Perspective on Wild Boar Demography and Evolution., 0,, 376-387.		3
131	Red and blond Mangalitza pigs display a signature of divergent directional selection in the <i>SLC45A2</i> gene. Animal Genetics, 2021, 52, 66-77.	0.6	3
132	Biodiversidad caprina en España. Archivos De Zootecnia, 2011, 60, 437-440.	0.2	3
133	Mitochondrial DNA diversity of the Sardinian local cattle stock. Scientific Reports, 2022, 12, 2486.	1.6	3
134	Characterization of the bovine BCL2L1 gene and related pseudogenes. Animal Genetics, 2003, 34, 457-461.	0.6	2
135	Assignment of the mitochondrial glycerol-3-phosphate acyltransferase (GPAT) gene to porcine chromosome 14. Animal Genetics, 2003, 34, 387-387.	0.6	2
136	Influencia hist \tilde{A}^3 rica y actual de los genotipos canarios en la poblaci \tilde{A}^3 n caprina americana. Animal Genetic Resources Information, 2004, 35, 49-60.	0.3	2
137	Nucleotide Sequence and Polymorphism of the Pig Acyl Coenzyme A Synthetase Long-Chain 1 (ACSL1) Gene. Animal Biotechnology, 2007, 18, 117-122.	0.7	2
138	Alternative splicing at exon 28 of the <i> acetylâ€coenzyme A carboxylase α</i> gene in adult pigs and embryos. Animal Genetics, 2008, 39, 205-206.	0.6	2
139	Polymorphism of the caprine malic enzyme 1 (ME1) gene and its association with milk quality traits in Murciano–Granadina goats. Animal, 2010, 4, 1953-1957.	1.3	2
140	Identification of c.483C>T polymorphism in the caprine tyrosinase-related protein 1 (<i>TYRP1</i>) gene. Italian Journal of Animal Science, 2012, 11, e12.	0.8	2
141	Genetic Factors that Regulate Milk Protein and Lipid Composition in Goats. , 0, , .		2
142	Detection of homozygous genotypes for a putatively lethal recessive mutation in the porcine argininosuccinate synthase 1 (<i>ASS1</i>) gene. Animal Genetics, 2020, 51, 106-110.	0.6	2
143	Markers with low GenTrain scores can generate spurious signals in genomeâ€wide scans for transmission ratio distortion. Animal Genetics, 2021, 52, 779-781.	0.6	2
144	Modeling <scp>microRNA</scp> â€driven postâ€transcriptional regulation using exon–intron split analysis in pigs. Animal Genetics, 0, , .	0.6	2

#	Article	IF	Citations
145	Structural characterization of the porcine pyruvate carboxylase (PC) gene. Journal of Animal Breeding and Genetics, 2003, 120, 338-345.	0.8	1
146	A caprine dinucleotide repeat: microsatellite CHI AE54. Animal Genetics, 2009, 27, 435-436.	0.6	1
147	Identification of positively selected sites in the goat <i>kappa casein</i> (<i>CSN3</i>) gene. Animal Genetics, 2010, 41, 332-332.	0.6	1
148	Identification of two paralogous caprine CD36 genes that display highly divergent mRNA expression profiles. Comparative Immunology, Microbiology and Infectious Diseases, 2013, 36, 1-7.	0.7	1
149	Associations between pig adiponectin (ADIPOQ) genotype and serum lipid levels are modulated by age-specific modifiers1. Journal of Animal Science, 2014, 92, 5367-5373.	0.2	1
150	An association analysis between the variability of the caprine CD36 and CD36-like genes and dairy traits. Small Ruminant Research, 2014, 121, 244-247.	0.6	1
151	Variation at the 3′â€∢scp>UTR of the goat <i>α</i> _{S2} ―and <i>β</i> àê€asein genes is no associated with milk protein and dry matter contents in <scp>M</scp> urcianoâ€∢scp>Granadina goats. Animal Genetics, 2015, 46, 95-96.	ot 0.6	1
152	Mitochondrial <scp>DNA</scp> variation in Ukrainian wild boars. Animal Genetics, 2017, 48, 725-726.	0.6	1
153	Conservation of Goat Populations from Southwestern Europe Based on Molecular Diversity Criteria. , 2017, , 509-533.		1
154	Characterizing the Mitochondrial Diversity of Arbi Goats from Tunisia. Biochemical Genetics, 2021, 59, 1225-1232.	0.8	1
155	An association analysis between a missense polymorphism at the pig PCSK9 gene and serum lipid and meat quality traits in Duroc pigs. Livestock Science, 2016, 190, 27-30.	0.6	0
156	Low mitochondrial diversity in native Italian pig breeds is consistent with the occurrence of strong population bottlenecks. Animal Genetics, 2017, 48, 726-727.	0.6	0
157	Assessing the Diversity and Population Substructure of Sarda Breed Bucks by Using Mtdna and Y-Chromosome Markers. Animals, 2020, 10, 2194.	1.0	0
158	An association analysis between a polymorphism in the SEC24A gene and lipid traits recorded in Duroc pigs. Italian Journal of Animal Science, 2021, 20, 1444-1451.	0.8	0