Jeremiah J Gassensmith

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/670167/publications.pdf

Version: 2024-02-01

70 papers 4,738 citations

30 h-index 106344 65 g-index

122 all docs

 $\begin{array}{c} 122 \\ \text{docs citations} \end{array}$

times ranked

122

5958 citing authors

#	Article	IF	CITATIONS
1	Zeolitic Imidazolate Framework Nanoencapsulation of CpG for Stabilization and Enhancement of Immunoadjuvancy. ACS Applied Nano Materials, 2022, 5, 13697-13704.	5.0	14
2	Supramolecular Reinforcement of a Large-Pore 2D Covalent Organic Framework. Journal of the American Chemical Society, 2022, 144, 2468-2473.	13.7	24
3	Virus-like particles: a self-assembled toolbox for cancer therapy. Materials Today Chemistry, 2022, 24, 100808.	3.5	7
4	Stabilization of supramolecular membrane protein–lipid bilayer assemblies through immobilization in a crystalline exoskeleton. Nature Communications, 2021, 12, 2202.	12.8	35
5	Rapidly Reversible Organic Crystalline Switch for Conversion of Heat into Mechanical Energy. Journal of the American Chemical Society, 2021, 143, 5951-5957.	13.7	29
6	Biomaterials and nanomaterials for sustained release vaccine delivery. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2021, 13, e1735.	6.1	14
7	Identification and physical characterization of a spontaneous mutation of the tobacco mosaic virus in the laboratory environment. Scientific Reports, 2021, 11, 15109.	3.3	5
8	PhotothermalPhage: A Virus-Based Photothermal Therapeutic Agent. Journal of the American Chemical Society, 2021, 143, 16428-16438.	13.7	33
9	Expanding Inclusivity with Learner-Generated Study Aids in Three Different Science Courses. Journal of Chemical Education, 2021, 98, 3379-3383.	2.3	2
10	Metal–Organic Framework Encapsulated Whole-Cell Vaccines Enhance Humoral Immunity against Bacterial Infection. ACS Nano, 2021, 15, 17426-17438.	14.6	37
11	Strong π-stacking causes unusually large anisotropic thermal expansion and thermochromism. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	13
12	Virus like particles: fundamental concepts, biological interactions, and clinical applications. , 2020, , $153\text{-}174$.		10
13	Supramolecular and biomacromolecular enhancement of metal-free magnetic resonance imaging contrast agents. Chemical Science, 2020, 11, 2045-2050.	7.4	34
14	Hierarchical Porous Carbon Arising from Metal–Organic Framework-Encapsulated Bacteria and Its Energy Storage Potential. ACS Applied Materials & Samp; Interfaces, 2020, 12, 11884-11889.	8.0	33
15	Supramolecular Encapsulation of Small-Ultrared Fluorescent Proteins in Virus-Like Nanoparticles for Noninvasive In Vivo Imaging Agents. Bioconjugate Chemistry, 2020, 31, 1529-1536.	3.6	35
16	Using FRET to measure the time it takes for a cell to destroy a virus. Nanoscale, 2020, 12, 9124-9132.	5.6	6
17	Metal-Organic Framework Enhanced Cellular and Humoral Immune Response Against Sepsis Causing Infection. ECS Meeting Abstracts, 2020, MA2020-02, 2031-2031.	0.0	O
18	(Keynote) Biomimetic Preservation of Protein and Cell Surface Markers with Metal-Organic Frameworks for Controlled Protein Delivery and Room Temperature Storage and Shipping. ECS Meeting Abstracts, 2020, MA2020-02, 2029-2029.	0.0	0

#	Article	IF	CITATIONS
19	A biopolymerâ€based 3D printable hydrogel for toxic metal adsorption from water. Polymer International, 2019, 68, 964-971.	3.1	31
20	Growth of ZIF-8 on molecularly ordered 2-methylimidazole/single-walled carbon nanotubes to form highly porous, electrically conductive composites. Chemical Science, 2019, 10, 737-742.	7.4	34
21	ZIF-8 degrades in cell media, serum, and some—but not all—common laboratory buffers. Supramolecular Chemistry, 2019, 31, 485-490.	1.2	100
22	Enhanced Stability and Controlled Delivery of MOF-Encapsulated Vaccines and Their Immunogenic Response In Vivo. ACS Applied Materials & Samp; Interfaces, 2019, 11, 9740-9746.	8.0	126
23	Biodegradable 3D printed polymer microneedles for transdermal drug delivery. Lab on A Chip, 2018, 18, 1223-1230.	6.0	219
24	Rock the nucleus: significantly enhanced nuclear membrane permeability and gene transfection by plasmonic nanobubble induced nanomechanical transduction. Chemical Communications, 2018, 54, 2479-2482.	4.1	19
25	Metal–Organic Frameworks for Cell and Virus Biology: A Perspective. ACS Nano, 2018, 12, 13-23.	14.6	214
26	Investigation of Controlled Growth of Metal–Organic Frameworks on Anisotropic Virus Particles. ACS Applied Materials & Diterfaces, 2018, 10, 18161-18169.	8.0	83
27	Site-Selective Nucleation and Size Control of Gold Nanoparticle Photothermal Antennae on the Pore Structures of a Virus. Journal of the American Chemical Society, 2018, 140, 17226-17233.	13.7	30
28	Protein–Polymer Delivery: Chemistry from the Cold Chain to the Clinic. Bioconjugate Chemistry, 2018, 29, 2867-2883.	3.6	38
29	Making Conjugation-induced Fluorescent PEGylated Virus-like Particles by Dibromomaleimide-disulfide Chemistry. Journal of Visualized Experiments, 2018, , .	0.3	3
30	Regulating the Uptake of Viral Nanoparticles in Macrophage and Cancer Cells via a pH Switch. Molecular Pharmaceutics, 2018, 15, 2984-2990.	4.6	11
31	Nitroxyl Modified Tobacco Mosaic Virus as a Metal-Free High-Relaxivity MRI and EPR Active Superoxide Sensor. Molecular Pharmaceutics, 2018, 15, 2973-2983.	4.6	39
32	The thermo-responsive behavior in molecular crystals of naphthalene diimides and their 3D printed thermochromic composites. CrystEngComm, 2018, 20, 6054-6060.	2.6	19
33	Synthesis of Metal–Organic Frameworks on Tobacco Mosaic Virus Templates. Methods in Molecular Biology, 2018, 1798, 95-108.	0.9	7
34	MOF vaccines – decreasing the dependency on refrigerated transport. Acta Crystallographica Section A: Foundations and Advances, 2018, 74, a317-a317.	0.1	0
35	Thermoplasmonics: Molecular Hyperthermia: Spatiotemporal Protein Unfolding and Inactivation by Nanosecond Plasmonic Heating (Small 36/2017). Small, 2017, 13, .	10.0	0
36	Thermo-mechanically responsive crystalline organic cantilever. Chemical Communications, 2017, 53, 9890-9893.	4.1	35

#	Article	IF	Citations
37	Molecular Hyperthermia: Spatiotemporal Protein Unfolding and Inactivation by Nanosecond Plasmonic Heating. Small, 2017, 13, 1700841.	10.0	34
38	Fluorescent Functionalization across Quaternary Structure in a Virus-like Particle. Bioconjugate Chemistry, 2017, 28, 2277-2283.	3.6	17
39	Thermo-mechanical responsive crystalline organic semiconductor. Acta Crystallographica Section A: Foundations and Advances, 2017, 73, a262-a262.	0.1	0
40	Viral chemistry: the chemical functionalization of viral architectures to create new technology. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2016, 8, 512-534.	6.1	42
41	Templateâ€Directed Synthesis of Porous and Protective Core–Shell Bionanoparticles. Angewandte Chemie, 2016, 128, 10849-10854.	2.0	33
42	Templateâ€Directed Synthesis of Porous and Protective Core–Shell Bionanoparticles. Angewandte Chemie - International Edition, 2016, 55, 10691-10696.	13.8	118
43	Dual Functionalized Bacteriophage $Q\hat{l}^2$ as a Photocaged Drug Carrier. Small, 2016, 12, 4563-4571.	10.0	39
44	A Metal–Organic Framework-Based Material for Electrochemical Sensing of Carbon Dioxide. Journal of the American Chemical Society, 2014, 136, 8277-8282.	13.7	218
45	The Chemistry of Confined Spaces. Current Organic Chemistry, 2014, 18, 2002-2009.	1.6	10
46	Direct Calorimetric Measurement of Enthalpy of Adsorption of Carbon Dioxide on CD-MOF-2, a Green Metal–Organic Framework. Journal of the American Chemical Society, 2013, 135, 6790-6793.	13.7	140
47	Patterned Assembly of Quantum Dots onto Surfaces Modified with Click Microcontact Printing. Advanced Materials, 2013, 25, 223-226.	21.0	14
48	Polyporous Metal-Coordination Frameworks. Organic Letters, 2012, 14, 1460-1463.	4.6	47
49	Self-Assembly of a [2]Pseudorota[3]catenane in Water. Journal of the American Chemical Society, 2012, 134, 17007-17010.	13.7	38
50	Nanoporous Carbohydrate Metal–Organic Frameworks. Journal of the American Chemical Society, 2012, 134, 406-417.	13.7	271
51	Solution-Phase Mechanistic Study and Solid-State Structure of a Tris(bipyridinium radical cation) Inclusion Complex. Journal of the American Chemical Society, 2012, 134, 3061-3072.	13.7	123
52	Stereochemistry of Molecular Figuresâ€ofâ€Eight. Chemistry - A European Journal, 2012, 18, 10312-10323.	3.3	24
53	Donor–acceptor molecular figures-of-eight. Chemical Communications, 2011, 47, 11870.	4.1	44
54	Macrocycle Breathing in [2]Rotaxanes with Tetralactam Macrocycles. Journal of Organic Chemistry, 2011, 76, 688-691.	3.2	26

#	Article	IF	CITATIONS
55	Microcontact Click Printing for Templating Ultrathin Films of Metalâ^'Organic Frameworksâ€. Langmuir, 2011, 27, 1341-1345.	3.5	31
56	Strong and Reversible Binding of Carbon Dioxide in a Green Metal–Organic Framework. Journal of the American Chemical Society, 2011, 133, 15312-15315.	13.7	346
57	Imprinting Chemical and Responsive Micropatterns into Metal–Organic Frameworks. Angewandte Chemie - International Edition, 2011, 50, 276-279.	13.8	68
58	Squaraine Rotaxane as a Reversible Optical Chloride Sensor. Chemistry - A European Journal, 2010, 16, 2916-2921.	3.3	136
59	Titelbild: Metal-Organic Frameworks from Edible Natural Products (Angew. Chem. 46/2010). Angewandte Chemie, 2010, 122, 8715-8715.	2.0	0
60	Metal–Organic Frameworks from Edible Natural Products. Angewandte Chemie - International Edition, 2010, 49, 8630-8634.	13.8	568
61	Cover Picture: Metal-Organic Frameworks from Edible Natural Products (Angew. Chem. Int. Ed.) Tj ETQq1 1 0.784	4314 rgBT 13.8	Overlock 10
62	Storable, thermally activated, near-infrared chemiluminescent dyes and dye-stained microparticles for optical imaging. Nature Chemistry, 2010, 2, 1025-1030.	13.6	247
63	A New Class of Hydroxy-Substituted Squaraine Rotaxane. Australian Journal of Chemistry, 2010, 63, 792.	0.9	14
64	Chromatography in a Single Metalâ^'Organic Framework (MOF) Crystal. Journal of the American Chemical Society, 2010, 132, 16358-16361.	13.7	192
65	Effect of stopper size on squaraine rotaxane stability. Supramolecular Chemistry, 2009, 21, 118-124.	1.2	22
66	Discovery and early development of squaraine rotaxanes. Chemical Communications, 2009, , 6329.	4.1	207
67	Cycloaddition to an anthracene-derived macrocyclic receptor with supramolecular control of regioselectivity. Chemical Communications, 2009, , 2517.	4.1	25
68	Synthesis and Photophysical Investigation of Squaraine Rotaxanes by "Clicked Capping― Organic Letters, 2008, 10, 3343-3346.	4.6	67
69	Crossing the threshold from accelerated substitution to elimination with a bifunctional macrocycle. New Journal of Chemistry, 2008, 32, 843.	2.8	4
70	Self-Assembly of Fluorescent Inclusion Complexes in Competitive Media Including the Interior of Living Cells. Journal of the American Chemical Society, 2007, 129, 15054-15059.	13.7	140