
Isha Mutreja

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6701645/publications.pdf Version: 2024-02-01

Ιςήλ Μιιτρειλ

#	Article	IF	CITATIONS
1	Osteogenic and angiogenic tissue formation in high fidelity nanocomposite Laponite-gelatin bioinks. Biofabrication, 2019, 11, 035027.	3.7	142
2	Automated 3D bioassembly of micro-tissues for biofabrication of hybrid tissue engineered constructs. Biofabrication, 2018, 10, 024103.	3.7	137
3	Design and characterisation of multi-functional strontium-gelatin nanocomposite bioinks with improved print fidelity and osteogenic capacity. Bioprinting, 2020, 18, e00073.	2.9	60
4	Cytotoxicity and cellular uptake of different sized gold nanoparticles in ovarian cancer cells. Nanotechnology, 2017, 28, 475101.	1.3	44
5	Biomimetic mineralized hybrid scaffolds with antimicrobial peptides. Bioactive Materials, 2021, 6, 2250-2260.	8.6	36
6	The deposition of strontium-substituted hydroxyapatite coatings. Journal of Materials Science: Materials in Medicine, 2015, 26, 65.	1.7	34
7	CONTROLLING THE SIZE AND SIZE DISTRIBUTION OF GOLD NANOPARTICLES: A DESIGN OF EXPERIMENT STUDY. International Journal of Nanoscience, 2012, 11, 1250023.	0.4	27
8	Positive and negative bioimprinted polymeric substrates: new platforms for cell culture. Biofabrication, 2015, 7, 025002.	3.7	27
9	Hybrid biofabrication of 3D osteoconductive constructs comprising Mg-based nanocomposites and cell-laden bioinks for bone repair. Bone, 2022, 154, 116198.	1.4	25
10	Hydrodynamic control of titania nanotube formation on Ti-6Al-4V alloys enhances osteogenic differentiation of human mesenchymal stromal cells. Materials Science and Engineering C, 2020, 109, 110562.	3.8	24
11	Enamel proteins mitigate mechanical and structural degradations in mature human enamel during acid attack. Materials Research Express, 2014, 1, 025404.	0.8	20
12	Seed mediated synthesis of highly mono-dispersed gold nanoparticles in the presence of hydroquinone. Nanotechnology, 2016, 27, 355601.	1.3	19
13	Combined Infection Control and Enhanced Osteogenic Differentiation Capacity on Additive Manufactured Tiâ€6Alâ€4V are Mediated via Titania Nanotube Delivery of Novel Biofilm Inhibitors. Advanced Materials Interfaces, 2020, 7, 1901963.	1.9	19
14	Organically Modified Silica Nanoparticles Interaction with Macrophage Cells: Assessment of Cell Viability on the Basis of Physicochemical Properties. Journal of Pharmaceutical Sciences, 2015, 104, 3943-3951.	1.6	11
15	Titania nanotube porosity controls dissolution rate of sputter deposited calcium phosphate (CaP) thin film coatings. RSC Advances, 2013, 3, 11263.	1.7	9
16	The Profile of Payload Release from Gold Nanoparticles Modified with a BODIPY®/PEG Mixed Monolayer. Journal of Nano Research, 2013, 25, 16-30.	0.8	7
17	Biofilm Inhibition via Delivery of Novel Methylthioadenosine Nucleosidase Inhibitors from PVA-Tyramine Hydrogels while Supporting Mesenchymal Stromal Cell Viability. ACS Biomaterials Science and Engineering, 2019, 5, 748-758.	2.6	7
18	Strontium- and peptide-modified silicate nanostructures for dual osteogenic and antimicrobial activity. , 2022, 135, 212735.		7

Isha Mutreja

#	Article	IF	CITATIONS
19	A Novel Dental Polymer with a Flipped External Ester Group Design that Resists Degradation via Polymer Backbone Preservation. ACS Biomaterials Science and Engineering, 2020, 6, 5609-5619.	2.6	5
20	Fabrication of free-standing casein devices with micro- and nanostructured regular and bioimprinted surface features. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2015, 33, .	0.6	4
21	A novel methacrylate derivative polymer that resists bacterial cellâ€mediated biodegradation. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2021, , .	1.6	4
22	Utilizing a degradation prediction pathway system to understand how a novel methacrylate derivative polymer with flipped external ester groups retains physico-mechanical properties following esterase exposure. Dental Materials, 2022, 38, 251-265.	1.6	3
23	Methacrylate Polymers With "Flipped External―Ester Groups: A Review. Frontiers in Dental Medicine, 0, 3, .	0.5	2
24	MODULATION OF THE PHYSICOCHEMICAL PROPERTIES OF CHITOSAN NANOPARTICLES FOR OPTIMUM DELIVERY OF PLASMID DNA THROUGH GILL MUCOSA. International Journal of Nanoscience, 2009, 08, 191-195.	0.4	1