Gero Frisch

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6701176/publications.pdf

Version: 2024-02-01

471371 454834 2,210 32 17 30 citations h-index g-index papers 36 36 36 2058 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Processing of metals and metal oxides using ionic liquids. Green Chemistry, 2011, 13, 471.	4.6	309
2	Electrodeposition of copper composites from deep eutectic solvents based on choline chloride. Physical Chemistry Chemical Physics, 2009, 11, 4269.	1.3	302
3	Electroplating Using Ionic Liquids. Annual Review of Materials Research, 2013, 43, 335-358.	4.3	228
4	The effect of additives on zinc electrodeposition from deep eutectic solvents. Electrochimica Acta, 2011, 56, 5272-5279.	2.6	186
5	EXAFS Study into the Speciation of Metal Salts Dissolved in Ionic Liquids and Deep Eutectic Solvents. Inorganic Chemistry, 2014, 53, 6280-6288.	1.9	170
6	The electrodeposition of silver composites using deep eutectic solvents. Physical Chemistry Chemical Physics, 2012, 14, 2443.	1.3	151
7	Double layer effects on metal nucleation in deep eutectic solvents. Physical Chemistry Chemical Physics, 2011, 13, 10224.	1.3	134
8	Speciation, physical and electrolytic properties of eutectic mixtures based on CrCl3·6H2O and urea. Physical Chemistry Chemical Physics, 2014, 16, 9047.	1.3	123
9	Anodic dissolution of metals in ionic liquids. Progress in Natural Science: Materials International, 2015, 25, 595-602.	1.8	105
10	Metal complexation in ionic liquids. Annual Reports on the Progress of Chemistry Section A, 2008, 104, 21.	0.8	72
11	Electrocatalytic recovery of elements from complex mixtures using deep eutectic solvents. Green Chemistry, 2015, 17, 2172-2179.	4.6	70
12	Leaching and Selective Extraction of Indium and Tin from Zinc Flue Dust Using an Oxalic Acid-Based Deep Eutectic Solvent. ACS Sustainable Chemistry and Engineering, 2019, 7, 5300-5308.	3.2	58
13	Direct extraction of copper from copper sulfide minerals using deep eutectic solvents. Green Chemistry, 2019, 21, 6502-6512.	4.6	57
14	Ionic liquids form ideal solutions. Chemical Communications, 2011, 47, 11876.	2.2	52
15	Voltammetric and spectroscopic study of ferrocene and hexacyanoferrate and the suitability of their redox couples as internal standards in ionic liquids. Physical Chemistry Chemical Physics, 2017, 19, 28841-28852.	1.3	39
16	Ligand exchange in ionic systems and its effect on silver nucleation and growth. Physical Chemistry Chemical Physics, 2013, 15, 17314.	1.3	29
17	Electrochemistry and speciation of Au ⁺ in a deep eutectic solvent: growth and morphology of galvanic immersion coatings. Physical Chemistry Chemical Physics, 2015, 17, 30540-30550.	1.3	20
18	Complexation Equilibria of Indium in Aqueous Chloride, Sulfate and Nitrate Solutions: An Electrochemical Investigation. Journal of Solution Chemistry, 2017, 46, 1928-1940.	0.6	17

#	Article	IF	CITATIONS
19	lonic liquid, glass or crystalline solid? Structures and thermal behaviour of (C ₄ mim) ₂ CuCl ₃ . Dalton Transactions, 2016, 45, 3327-3333.	1.6	15
20	Alkaline Metal Stannide-Stannates:†Double Salts†with Zintl Sn44†and Stannate SnO34†Anions. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2003, 629, 1661-1672.	0.6	14
21	Investigating the dissolution of iron sulfide and arsenide minerals in deep eutectic solvents. Hydrometallurgy, 2020, 198, 105511.	1.8	13
22	A5Fe3O6] (A = Rb, Cs), Cs[FeO2] und Cs8[Fe2O7]: Neue Oxoferrate der schweren Alkalimetalle / A5Fe3O6] (A = Rb, Cs), Cs[FeO2] and Cs8[Fe2O7]: New Oxoferrates of the Heavy Alkaline Metals. Zeitschrift Fur Naturforschung - Section B Journal of Chemical Sciences, 2004, 59, 771-781.	0.3	11
23	Neue Orthoferrate von Rubidium und Caesium:?-,?-Cs5[FelllO4] und A7I[FelVO4][FeVO4] (Al = Rb, Cs). Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2005, 631, 507-517.	0.6	8
24	A Lowâ€Cost Alâ€Graphite Battery with Urea and Acetamideâ€Based Electrolytes. ChemElectroChem, 2021, 8, 1988-1992.	1.7	7
25	Synthesis and stability of single-phase chalcopyrite $\hat{a} \in \mathbb{C}$ a potential reference material for key investigations in chemistry and metallurgical engineering. RSC Advances, 2021, 11, 3153-3161.	1.7	6
26	Cs6[Fe2O6] and Rb4[Fe2O5]: New oxoferrates(III) with edge sharing FeO4 tetrahedra. Zeitschrift Fur Kristallographie - Crystalline Materials, 2005, 220, 135-141.	0.4	5
27	A particle-based approach to predict the success and selectivity of leaching processes using ethaline - Comparison of simulated and experimental results. Hydrometallurgy, 2022, 211, 105869.	1.8	3
28	Quantifying indium with ion chromatography in hydro―and biohydrometallurgical leaching solutions. Journal of Separation Science, 2019, 42, 2517-2522.	1.3	2
29	Symmetry relationships between the crystal structures of chalcopyrite and its derivatives — a systematic approach to inform XRD analysis of Cuâ€Feâ€5 phases. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 0, , .	0.6	1
30	Alkaline Metal Stannide-Stannates: "Double Salts―with Zintl Sn4-4 and Stannate SnO4-3 Anions ChemInform, 2003, 34, no.	0.1	0
31	New Orthoferrates of Rubidium and Cesium: ?-, ?-Cs5[FellIO4] and A51[FeIVO4] [FeVO4] (Al: Rb, Cs) ChemInform, 2005, 36, no.	0.1	0
32	A Low ost Alâ€Graphite Battery with Urea and Acetamideâ€Based Electrolytes. ChemElectroChem, 2021, 8, 1928-1928.	1.7	0