Susan M Cormier

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6701091/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Adequacy of sample size for estimating a value from field observational data. Ecotoxicology and Environmental Safety, 2020, 203, 110992.	2.9	3
2	Systematic Review and Weight of Evidence Are Integral to Ecological and Human Health Assessments: They Need an Integrated Framework. Integrated Environmental Assessment and Management, 2020, 16, 718-728.	1.6	20
3	Modeling Spatial and Temporal Variation in Natural Background Specific Conductivity. Environmental Science & Technology, 2019, 53, 4316-4325.	4.6	14
4	A field-based characterization of conductivity in areas of minimal alteration: A case example in the Cascades of northwestern United States. Science of the Total Environment, 2018, 633, 1657-1666.	3.9	3
5	A field-based model of the relationship between extirpation of salt-intolerant benthic invertebrates and background conductivity. Science of the Total Environment, 2018, 633, 1629-1636.	3.9	26
6	A flow-chart for developing water quality criteria from two field-based methods. Science of the Total Environment, 2018, 633, 1647-1656.	3.9	10
7	Field-based method for evaluating the annual maximum specific conductivity tolerated by freshwater invertebrates. Science of the Total Environment, 2018, 633, 1637-1646.	3.9	15
8	Assessing background levels of specific conductivity using weight of evidence. Science of the Total Environment, 2018, 628-629, 1637-1649.	3.9	6
9	Stepâ€byâ€step calculation and spreadsheet tools for predicting stressor levels that extirpate genera and species. Integrated Environmental Assessment and Management, 2018, 14, 174-180.	1.6	4
10	Using extirpation to evaluate ionic tolerance of freshwater fish. Environmental Toxicology and Chemistry, 2018, 37, 871-883.	2.2	11
11	A weight of evidence framework for environmental assessments: Inferring quantities. Integrated Environmental Assessment and Management, 2017, 13, 1045-1051.	1.6	15
12	A weight of evidence framework for environmental assessments: Inferring qualities. Integrated Environmental Assessment and Management, 2017, 13, 1038-1044.	1.6	30
13	In Response : Bias in the science that supports environmental assessments—A perspective from regulatory assessment. Environmental Toxicology and Chemistry, 2016, 35, 1069-1070.	2.2	1
14	Bias in the development of health and ecological assessments and potential solutions. Human and Ecological Risk Assessment (HERA), 2016, 22, 99-115.	1.7	13
15	Why care about aquatic insects: Uses, benefits, and services. Integrated Environmental Assessment and Management, 2015, 11, 188-194.	1.6	44
16	The Problem of Biased Data and Potential Solutions for Health and Environmental Assessments. Human and Ecological Risk Assessment (HERA), 2015, 21, 1736-1752.	1.7	12
17	Using Field-Based Species Sensitivity Distributions to Infer Multiple Causes. Human and Ecological Risk Assessment (HERA), 2014, 20, 402-432.	1.7	10
18	Pragmatism: A practical philosophy for environmental scientists. Integrated Environmental Assessment and Management, 2013, 9, 181-184.	1.6	5

SUSAN M CORMIER

#	Article	IF	CITATIONS
19	A method for assessing the potential for confounding applied to ionic strength in central Appalachian streams. Environmental Toxicology and Chemistry, 2013, 32, 288-295.	2.2	22
20	Relationship of land use and elevated ionic strength in Appalachian watersheds. Environmental Toxicology and Chemistry, 2013, 32, 296-303.	2.2	45
21	A method for assessing causation of field exposure–response relationships. Environmental Toxicology and Chemistry, 2013, 32, 272-276.	2.2	12
22	A method for deriving waterâ€quality benchmarks using field data. Environmental Toxicology and Chemistry, 2013, 32, 255-262.	2.2	50
23	Assessing causation of the extirpation of stream macroinvertebrates by a mixture of ions. Environmental Toxicology and Chemistry, 2013, 32, 277-287.	2.2	87
24	Derivation of a benchmark for freshwater ionic strength. Environmental Toxicology and Chemistry, 2013, 32, 263-271.	2.2	113
25	Sources of data for water quality criteria. Environmental Toxicology and Chemistry, 2013, 32, 254-254.	2.2	5
26	Response to Roark et al. (2013) "Influence of subsampling and modeling assumptions on the USEPA field-based benchmark for conductivity― Integrated Environmental Assessment and Management, 2013, 9, 677-678.	1.6	3
27	Two Roles for Environmental Assessors: Technical Consultant and Advisor. Human and Ecological Risk Assessment (HERA), 2012, 18, 1153-1155.	1.7	4
28	Letter to the Editor in Chief Concerning the Article "Status of Fish and Macroinvertebrate Communities in a Watershed Experiencing High Rates of Fossil Fuel Extraction: Tenmile Creek, a Major Monongahela River Tributary" by Kimmel and Argent, 2012. Water, Air, and Soil Pollution, 2012, 223, 4659-4662.	1.1	2
29	Using Our Brains to Develop Better Policy. Risk Analysis, 2012, 32, 374-380.	1.5	26
30	Why and how to combine evidence in environmental assessments: Weighing evidence and building cases. Science of the Total Environment, 2011, 409, 1406-1417.	3.9	80
31	The Science and Philosophy of a Method for Assessing Environmental Causes. Human and Ecological Risk Assessment (HERA), 2010, 16, 19-34.	1.7	51
32	Causal Characteristics for Ecoepidemiology. Human and Ecological Risk Assessment (HERA), 2010, 16, 53-73.	1.7	41
33	When is a Formal Assessment Process Worthwhile?. Human and Ecological Risk Assessment (HERA), 2010, 16, 1-3.	1.7	6
34	Causal Assessment of Biological Impairment in the Little Floyd River, Iowa, USA. Human and Ecological Risk Assessment (HERA), 2010, 16, 116-148.	1.7	11
35	Weight-of-evidence evaluation in environmental assessment: Review of qualitative and quantitative approaches. Science of the Total Environment, 2009, 407, 5199-5205.	3.9	220
36	CADDIS: The Causal Analysis/Diagnosis Decision Information System. , 2009, , 1-24.		10

SUSAN M CORMIER

#	Article	IF	CITATIONS
37	The influence of suburban land use on habitat and biotic integrity of coastal Rhode Island streams. Environmental Monitoring and Assessment, 2008, 139, 119-136.	1.3	11
38	A Framework for Fully Integrating Environmental Assessment. Environmental Management, 2008, 42, 543-56.	1.2	47
39	Revitalizing environmental assessment. Integrated Environmental Assessment and Management, 2008, 4, 385-385.	1.6	1
40	A Theory of Practice for Environmental Assessment. Integrated Environmental Assessment and Management, 2008, 4, 478.	1.6	9
41	What is meant by riskâ€based environmental quality criteria?. Integrated Environmental Assessment and Management, 2008, 4, 486-489.	1.6	16
42	Using field data and weight of evidence to develop water quality criteria. Integrated Environmental Assessment and Management, 2008, 4, 490-504.	1.6	48
43	Revitalizing environmental assessment. Integrated Environmental Assessment and Management, 2008, 4, 385.	1.6	Ο
44	Reference Values for Exposure to PAH Contaminants: Comparison of Fish from Ohio and Mid-Atlantic Streams. Ecotoxicology, 2006, 15, 111-120.	1.1	2
45	ECOEPIDEMIOLOGY: A MEANS TO SAFEGUARD ECOSYSTEM SERVICES THAT SUSTAIN HUMAN WELFARE. , 2006, , 57-72.		1
46	CADDIS: A System to Help Investigators Determine the Causes of Biological Impairments in Aquatic Systems. Proceedings of the Water Environment Federation, 2005, 2005, 671-685.	0.0	0
47	Minimizing Cognitive Errors in Site-Specific Causal Assessments. Human and Ecological Risk Assessment (HERA), 2003, 9, 213-229.	1.7	14
48	The U.S. Environmental Protection Agency's Stressor Identification Guidance: A Process for Determining the Probable Causes of Biological Impairments. Human and Ecological Risk Assessment (HERA), 2003, 9, 1431-1443.	1.7	18
49	A methodology for inferring the causes of observed impairments in aquatic ecosystems. Environmental Toxicology and Chemistry, 2002, 21, 1101-1111.	2.2	111
50	Determining probable causes of ecological impairment in the Little Scioto River, Ohio, USA: Part 1. Listing candidate causes and analyzing evidence. Environmental Toxicology and Chemistry, 2002, 21, 1112-1124.	2.2	29
51	Determining the causes of impairments in the Little Scioto River, Ohio, USA: Part 2. Characterization of causes. Environmental Toxicology and Chemistry, 2002, 21, 1125-1137.	2.2	26
52	Development and evaluation of the Lake Macroinvertebrate Integrity Index (LMII) for New Jersey lakes and reservoirs. Environmental Monitoring and Assessment, 2002, 77, 311-333.	1.3	87
53	Methods development and use of macroinvertebrates as indicators of ecological conditions for streams in the Mid-Atlantic Highlands Region. Environmental Monitoring and Assessment, 2002, 78, 169-212.	1.3	63
54	A methodology for inferring the causes of observed impairments in aquatic ecosystems. , 2002, 21, 1101.		16

#	Article	IF	CITATIONS
55	Determining probable causes of ecological impairment in the Little Scioto River, Ohio, USA: Part 1. Listing candidate causes and analyzing evidence. , 2002, 21, 1112.		6
56	Determining the causes of impairments in the Little Scioto River, Ohio, USA: Part 2. Characterization of causes. , 2002, 21, 1125.		6
57	The easiest person to fool. Environmental Toxicology and Chemistry, 2002, 21, 1099-100.	2.2	1
58	A methodology for inferring the causes of observed impairments in aquatic ecosystems. Environmental Toxicology and Chemistry, 2002, 21, 1101-11.	2.2	22
59	Determining probable causes of ecological impairment in the Little Scioto River, Ohio, USA: part 1. Listing candidate causes and analyzing evidence. Environmental Toxicology and Chemistry, 2002, 21, 1112-24.	2.2	6
60	Determining the causes of impairments in the Little Scioto River, Ohio, USA: part 2. Characterization of causes. Environmental Toxicology and Chemistry, 2002, 21, 1125-37.	2.2	5
61	Predicting levels of stress from biological assessment data: empirical models from the Eastern Corn Belt Plains, Ohio, USA. Environmental Toxicology and Chemistry, 2002, 21, 1168-75.	2.2	1
62	Historical Monitoring of Biomarkers of PAH Exposure of Brown Bullhead in the Remediated Black River and the Cuyahoga River, Ohio. Journal of Great Lakes Research, 2001, 27, 191-198.	0.8	8
63	Temporal trends in ethoxyresorufinâ€oâ€deethylase activity of brook trout (<i>Salvelinus fontinalis</i>) fed 2,3,7,8â€ŧetrachlorodibenzoâ€ <i>p</i> â€dioxin. Environmental Toxicology and Chemistry, 2000, 19, 462-471.	2.2	8
64	Assessing ecological risk in watersheds: A case study of problem formulation in the Big Darby Creek watershed, Ohio, USA. Environmental Toxicology and Chemistry, 2000, 19, 1082-1096.	2.2	44
65	Using historical biological data to evaluate status and trends in the Big Darby Creek watershed (Ohio,) Tj ETQq1	1 0.78431 2.2	4 ggBT /Ov <mark>e</mark> r
66	Can biological assessments discriminate among types of stress? A case study from the Eastern Corn Belt Plains ecoregion. Environmental Toxicology and Chemistry, 2000, 19, 1113-1119.	2.2	55
67	Estimation of exposure criteria values for biliary polycyclic aromatic hydrocarbon metabolite concentrations in white suckers (<i>Catostomus commersoni</i>). Environmental Toxicology and Chemistry, 2000, 19, 1120-1126.	2.2	17
68	Using regional exposure criteria and upstream reference data to characterize spatial and temporal exposures to chemical contaminants. Environmental Toxicology and Chemistry, 2000, 19, 1127-1135.	2.2	14
69	Ecological Indicators in Risk Assessment: Workshop Summary. Human and Ecological Risk Assessment (HERA), 2000, 6, 671-677.	1.7	11
70	Assessing ecological risk in watersheds: A case study of problem formulation in the Big Darby Creek watershed, Ohio, USA. , 2000, 19, 1082.		7
71	ESTIMATION OF EXPOSURE CRITERIA VALUES FOR BILIARY POLYCYCLIC AROMATIC HYDROCARBON METABOLITE CONCENTRATIONS IN WHITE SUCKERS (CATOSTOMUS COMMERSONI). Environmental Toxicology and Chemistry, 2000, 19, 1120.	2.2	5
72	TEMPORAL TRENDS IN ETHOXYRESORUFIN-O-DEETHYLASE ACTIVITY OF BROOK TROUT (SALVELINUS) Tj ETQqO	0 0 rgBT /0 2.2	Overlock 10 ⁻ 6

```
19, 462.
```

SUSAN M CORMIER

#	Article	IF	CITATIONS
73	Contaminant Exposure, Biochemical, and Histopathological Biomarkers in White Suckers from Contaminated and Reference Sites in the Sheboygan River, Wisconsin. Journal of Great Lakes Research, 1997, 23, 119-130.	0.8	22
74	Fish Biliary Polycyclic Aromatic Hydrocarbon Metabolites Estimated by Fixed-Wavelength Fluorescence: Comparison with HPLC-Fluorescent Detection. Ecotoxicology and Environmental Safety, 1996, 35, 16-23.	2.9	133
75	New nephron development in fish from polluted waters: a possible biomarker. Ecotoxicology, 1995, 4, 157-168.	1.1	25
76	Synchronous fluorometric measurement of metabolites of polycyclic aromatic hydrocarbons in the bile of brown bullhead. Environmental Toxicology and Chemistry, 1994, 13, 707-715.	2.2	83
77	Natural Occurrence of Triploidy in a Wild Brown Bullhead. Transactions of the American Fisheries Society, 1993, 122, 390-392.	0.6	13
78	Fine structure of hepatocytes and hepatocellular carcinoma of the Atlantic tomcod, Microgadus tomcod (Walbaum). Journal of Fish Diseases, 1986, 9, 179-194.	0.9	14
79	Cellular basis for tentacle adherence in the Portuguese man-of-war (Physalia physalis). Tissue and Cell, 1980, 12, 713-721.	1.0	33
80	Cnidocil apparatus: sensory receptor of Physalia nematocytes. Journal of Ultrastructure Research, 1980, 72, 13-19.	1.4	56