List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6701000/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Colossal enhancement of spin–orbit coupling in weakly hydrogenated graphene. Nature Physics, 2013, 9, 284-287.	6.5	384
2	Observation of Long Spin-Relaxation Times in Bilayer Graphene at Room Temperature. Physical Review Letters, 2011, 107, 047206.	2.9	235
3	Toward Wafer Scale Fabrication of Graphene Based Spin Valve Devices. Nano Letters, 2011, 11, 2363-2368.	4.5	214
4	Giant spin Hall effect in graphene grown by chemical vapour deposition. Nature Communications, 2014, 5, 4748.	5.8	179
5	Polymer electronic materials: a review of charge transport. Polymer International, 2006, 55, 1371-1384.	1.6	158
6	A Bioelectronic Platform Using a Grapheneâ^'Lipid Bilayer Interface. ACS Nano, 2010, 4, 7387-7394.	7.3	132
7	Highâ€Gain Grapheneâ€Titanium Oxide Photoconductor Made from Inkjet Printable Ionic Solution. Advanced Materials, 2010, 22, 5265-5270.	11.1	131
8	Flow Sensing of Single Cell by Graphene Transistor in a Microfluidic Channel. Nano Letters, 2011, 11, 5240-5246.	4.5	106
9	Controlled Hydrogenation of Graphene Sheets and Nanoribbons. ACS Nano, 2011, 5, 888-896.	7.3	105
10	Graphene transport at high carrier densities using a polymer electrolyte gate. Europhysics Letters, 2010, 92, 27001.	0.7	73
11	Photocatalytic reduction of carbon dioxide using graphene oxide wrapped TiO2 nanotubes. Applied Surface Science, 2019, 485, 48-55.	3.1	69
12	Correlation of morphology and charge transport in poly(3,4-ethylenedioxythiophene)–polystyrenesulfonic acid (PEDOT–PSS) films. Journal of Physics Condensed Matter, 2009, 21, 072101.	0.7	59
13	Electronic Properties of Nanodiamond Decorated Graphene. ACS Nano, 2012, 6, 1018-1025.	7.3	57
14	Estimating the thermal expansion coefficient of graphene: the role of graphene–substrate interactions. Journal of Physics Condensed Matter, 2016, 28, 085301.	0.7	45
15	Magnetotransport in transparent single-wall carbon nanotube networks. Physical Review B, 2007, 76, .	1.1	34
16	Localized insulator-conductor transformation of graphene oxide thin films via focused laser beam irradiation. Applied Physics A: Materials Science and Processing, 2012, 106, 523-531.	1.1	34
17	Effect of annealing temperature on the phase transition, structural stability and photo-electrochemical performance of TiO 2 multi-leg nanotubes. Catalysis Today, 2016, 278, 255-261.	2.2	29
18	Thickness-dependent Crack Propagation in Uniaxially Strained Conducting Graphene Oxide Films on Flexible Substrates. Scientific Reports, 2017, 7, 2598.	1.6	28

#	Article	lF	CITATIONS
19	Unconventional Transport through Graphene on SrTiO3: A Plausible Effect of SrTiO3 Phase-Transitions. Scientific Reports, 2014, 4, 6173.	1.6	27
20	Swelling kinetics and electrical charge transport in PEDOT:PSS thin films exposed to water vapor. Journal of Physics Condensed Matter, 2018, 30, 225101.	0.7	27
21	Enhanced photoelectrochemical performance of multi-leg TiO ₂ nanotubes through efficient light harvesting. Journal Physics D: Applied Physics, 2015, 48, 295302.	1.3	26
22	Charge transport in transparent conductors: A comparison. Journal of Applied Physics, 2009, 105, 063713.	1.1	25
23	Confined water layers in graphene oxide probed with spectroscopic ellipsometry. Applied Physics Letters, 2015, 106, .	1.5	25
24	Equivalent circuit for an organic field-effect transistor from impedance measurements under dc bias. Applied Physics Letters, 2006, 88, 123504.	1.5	22
25	Thermal transport across wrinkles in few-layer graphene stacks. Nanoscale Advances, 2021, 3, 1708-1716.	2.2	22
26	Wrinkle and crack-dependent charge transport in a uniaxially strained conducting polymer film on a flexible substrate. Soft Matter, 2017, 13, 5437-5444.	1.2	20
27	Charge transport in lightly reduced graphene oxide: A transport energy perspective. Journal of Applied Physics, 2013, 113, .	1.1	19
28	Nanostructuring mechanical cracks in a flexible conducting polymer thin film for ultra-sensitive vapor sensing. Nanoscale, 2019, 11, 200-210.	2.8	19
29	Magnetoconductance in single-wall carbon nanotubes: Electron-electron interaction and weak localization contributions. Physical Review B, 2007, 76, .	1.1	18
30	Mechanical tearing of graphene on an oxidizing metal surface. Nanotechnology, 2015, 26, 495701.	1.3	17
31	Probing the charge recombination in rGO decorated mixed phase (anatase-rutile) TiO2 multi-leg nanotubes. AIP Advances, 2016, 6, .	0.6	16
32	Probing the electric double-layer capacitance in a Keggin-type polyoxometalate ionic liquid gated graphene transistor. Physical Chemistry Chemical Physics, 2018, 20, 18474-18483.	1.3	16
33	Charge transport in transparent single-wall carbon nanotube networks. Journal of Physics Condensed Matter, 2007, 19, 446006.	0.7	15
34	Enhanced Photo-Electrochemical Performance of Reduced Graphene-Oxide Wrapped TiO ₂ Multi-Leg Nanotubes. Journal of the Electrochemical Society, 2016, 163, H652-H656.	1.3	15
35	Photoimpedance characterization of polymer field-effect transistor. Applied Physics Letters, 2009, 95, 093308.	1.5	11
36	Trap Levels in Graphene Oxide: A Thermally Stimulated Current Study. ECS Solid State Letters, 2012, 2, M17-M19.	1.4	9

#	Article	IF	CITATIONS
37	Photo-electrochemical properties of graphene wrapped hierarchically branched nanostructures obtained through hydrothermally transformed TiO ₂ nanotubes. Nanotechnology, 2017, 28, 405706.	1.3	9
38	Strain and morphology of graphene membranes on responsive microhydrogel patterns. Applied Physics Letters, 2014, 105, .	1.5	8
39	High photoelectrochemical performance of reduced graphene oxide wrapped, CdS functionalized, TiO ₂ multi-leg nanotubes. Nanotechnology, 2020, 31, 275701.	1.3	8
40	Chemical-free transfer of patterned reduced graphene oxide thin films for large area flexible electronics and nanoelectromechanical systems. Nanotechnology, 2020, 31, 495301.	1.3	8
41	Geometry dependent performance limits of stretchable reduced graphene oxide interconnects: The role of wrinkles. Carbon, 2020, 158, 864-872.	5.4	7
42	Humidity-induced significant microstructural reordering in partially reduced graphene oxide: Insights on water permeation mechanism. Journal of Applied Physics, 2019, 125, .	1.1	6
43	Field-Effect and Frequency Dependent Transport in Semiconductor-Enriched Single-Wall Carbon Nanotube Network Device. Journal of Nanoscience and Nanotechnology, 2009, 9, 6533-6537.	0.9	5
44	Multiple Virtual Tunneling of Dirac Fermions in Granular Graphene. Scientific Reports, 2013, 3, 3404.	1.6	4
45	Breakdown of water super-permeation in electrically insulating graphene oxide films: role of dual interlayer spacing. Nanotechnology, 2018, 29, 325706.	1.3	4
46	Graphene: Polymer composites as moisture barrier and charge transport layer toward solar cell applications. AIP Conference Proceedings, 2018, , .	0.3	4
47	Anomalous charge transport in reduced graphene oxide films on a uniaxially strained elastic substrate. Journal of Physics Condensed Matter, 2017, 29, 235301.	0.7	4
48	Electroconductance in single-wall carbon nanotubes. Applied Physics Letters, 2009, 95, .	1.5	3
49	Correlating Chemical Structure and Charge Transport in Reduced Graphene Oxide for Transparent Conductor and Interconnect Applications. , 2015, , .		3
50	Deformation of graphene on an oxidizing nickel surface: the role of graphene layer number. Materials Research Express, 2016, 3, 115016.	0.8	2
51	Ion percolation through annealed, supported graphene oxide films: Role of nanochannels and voids. Journal of Applied Physics, 2019, 125, 144304.	1.1	2
52	Stable thermal transport in reduced graphene-oxide aerogel at elevated temperatures. Materials Research Express, 2020, 7, 105603.	0.8	2
53	Organic doping of rotated double layer graphene. AIP Conference Proceedings, 2016, , .	0.3	1
54	Molecular doping of graphene across ultraâ€ŧhin molybdenum disulphide spacers. Physica Status Solidi (B): Basic Research, 2017, 254, 1600521.	0.7	1

#	Article	IF	CITATIONS
55	Structure-Property Correlations of Carbon and Nitrogen Incorporated NiFe2O4. IEEE Transactions on Magnetics, 2017, 53, 1-5.	1.2	1
56	Graphene interfaced perovskite solar cells: Role of graphene flake size. AIP Conference Proceedings, 2018, , .	0.3	1
57	Multilayer graphene as an effective corrosion protection coating for copper. AIP Conference Proceedings, 2018, , .	0.3	1
58	Estimation Of Charge Transport Parameters And Equivalent Circuit For Poly Alkyl Thiophene Field-Effect Transistors. , 2010, , .		0
59	Graphene Oxide Modified TiO ₂ Micro Whiskers and Their Photo Electrochemical Performance. Journal of Nanoscience and Nanotechnology, 2016, 16, 4835-4839.	0.9	0
60	Isotropic charge transport in conducting PEDOT:PSS thin films on pre-strained stretchable substrates. AIP Conference Proceedings, 2018, , .	0.3	0
61	Probing permeation of energetic hydrogen atoms through molybdenum disulphide on graphene platform. Materials Research Express, 2019, 6, 095614.	0.8	0
62	A modified bulge test for in-situ study of ionic permeation properties of membranes under continuously tunable, uniform pressure. Review of Scientific Instruments, 2019, 90, 073906.	0.6	0
63	Intercalated water mediated electromechanical response of graphene oxide films on flexible substrates. Journal of Physics Condensed Matter, 2021, 34, .	0.7	0
64	Thermal expansion coefficient of multilayer graphene with rotational stacking faults. AIP Conference Proceedings, 2021, , .	0.3	0