Seongryu Joo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6700932/publications.pdf

Version: 2024-02-01

1937685 1588992 8 63 4 8 citations h-index g-index papers 8 8 8 65 citing authors docs citations times ranked all docs

#	Article	IF	CITATIONS
1	A facile protocol for copperâ€free palladiumâ€catalyzed Sonogashira coupling in aqueous media. Bulletin of the Korean Chemical Society, 2022, 43, 110-116.	1.9	4
2	An alternative route for boron phenoxide preparation from arylboronic acid and its application for C O bond formation. Tetrahedron Letters, 2020, 61, 152197.	1.4	2
3	A Combination of Biocompatible Room Temperature Ionic Liquid and Palladium Catalyst for Base―and Ligandâ€Free Suzuki Coupling Reactions. Asian Journal of Organic Chemistry, 2020, 9, 584-587.	2.7	9
4	Pd-catalyst Anchored on Schiff Base-modified Chitosan-CNT Nanohybrid for the Suzuki–Miyaura Coupling Reaction. Current Organic Chemistry, 2020, 24, 2383-2390.	1.6	1
5	Pd-catalyst Anchored on Schiff Base-modified Chitosan-CNT Nanohybrid for the Suzuki–Miyaura Coupling Reaction. Current Organic Chemistry, 2020, 24, 2383-2390.	1.6	2
6	Cooperation of biopolymer chitosan with hydrogen peroxide for ipso-hydroxylation of arylboronic acids under green conditions. Tetrahedron Letters, 2019, 60, 1509-1513.	1.4	16
7	Heterogeneous Palladium–Chitosan–CNT Core–Shell Nanohybrid Composite for Ipso-hydroxylation of Arylboronic Acids. Catalysis Letters, 2019, 149, 1560-1564.	2.6	18
8	Recyclable CNT-chitosan nanohybrid film utilized in copper-catalyzed aerobic ipso-hydroxylation of arylboronic acids in aqueous media. Tetrahedron Letters, 2018, 59, 4597-4601.	1.4	11