
Patricia Dankers

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6700892/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Biomaterial-driven kidney organoid maturation. Current Opinion in Biomedical Engineering, 2022, 21, 100355.	3.4	1
2	Factors Influencing Retention of Injected Biomaterials to Treat Myocardial Infarction. Advanced Materials Interfaces, 2022, 9, .	3.7	12
3	Supramolecular polymer materials bring restorative heart valve therapy to patients. Materials Today, 2022, 52, 175-187.	14.2	18
4	Animal studies for the evaluation of in situ tissue-engineered vascular grafts — a systematic review, evidence map, and meta-analysis. Npj Regenerative Medicine, 2022, 7, 17.	5.2	10
5	Supramolecular Biomaterials in the Netherlands. Tissue Engineering - Part A, 2022, , .	3.1	3
6	Tuning the affinity of amphiphilic guest molecules in a supramolecular polymer transient network. RSC Advances, 2022, 12, 14052-14060.	3.6	4
7	Renal Epithelial Cell Responses to Supramolecular Thermoplastic Elastomeric Concave and Convex Structures. Advanced Materials Interfaces, 2021, 8, 2001490.	3.7	5
8	Oxidative stress in pancreatic alpha and beta cells as a selection criterion for biocompatible biomaterials. Biomaterials, 2021, 267, 120449.	11.4	11
9	Introduction of Enzyme-Responsivity in Biomaterials to Achieve Dynamic Reciprocity in Cell–Material Interactions. Biomacromolecules, 2021, 22, 4-23.	5.4	21
10	Biomaterial screening of protein coatings and peptide additives: towards a simple synthetic mimic of a complex natural coating for a bio-artificial kidney. Biomaterials Science, 2021, 9, 2209-2220.	5.4	8
11	In Vivo Retention Quantification of Supramolecular Hydrogels Engineered for Cardiac Delivery. Advanced Healthcare Materials, 2021, 10, e2001987.	7.6	18
12	The inâ€vitro biocompatibility of ureidoâ€pyrimidinone compounds and polymer degradation products. Journal of Polymer Science, 2021, 59, 1267-1277.	3.8	10
13	Effectiveness of cell adhesive additives in different supramolecular polymers. Journal of Polymer Science, 2021, 59, 1253-1266.	3.8	1
14	Protein Micropatterning in 2.5D: An Approach to Investigate Cellular Responses in Multi-Cue Environments. ACS Applied Materials & Interfaces, 2021, 13, 25589-25598.	8.0	18
15	Polymer Science and Technology in the Institute for Complex Molecular Systems at Eindhoven University of Technology. Journal of Polymer Science, 2021, 59, 1129-1130.	3.8	0
16	Engineering the Dynamics of Cell Adhesion Cues in Supramolecular Hydrogels for Facile Control over Cell Encapsulation and Behavior. Advanced Materials, 2021, 33, e2008111.	21.0	52
17	Distinct Effects of Heparin and Interleukinâ€4 Functionalization on Macrophage Polarization and In Situ Arterial Tissue Regeneration Using Resorbable Supramolecular Vascular Grafts in Rats. Advanced Healthcare Materials, 2021, 10, e2101103.	7.6	11
18	Towards understanding the messengers of extracellular space: Computational models of outside-in integrin reaction networks. Computational and Structural Biotechnology Journal, 2021, 19, 303-314.	4.1	9

#	Article	IF	CITATIONS
19	Multi-component supramolecular fibers with elastomeric properties and controlled drug release. Biomaterials Science, 2020, 8, 163-173.	5.4	13
20	Development of Poor Cell Adhesive Immersion Precipitation Membranes Based on Supramolecular Bisâ€Urea Polymers. Macromolecular Bioscience, 2020, 20, e1900277.	4.1	3
21	Optimization of Anti-kinking Designs for Vascular Grafts Based on Supramolecular Materials. Frontiers in Materials, 2020, 7, .	2.4	14
22	Anisotropic hygro-expansion in hydrogel fibers owing to uniting 3D electrowriting and supramolecular polymer assembly. European Polymer Journal, 2020, 141, 110099.	5.4	13
23	Inconsistency in Graft Outcome of Bilayered Bioresorbable Supramolecular Arterial Scaffolds in Rats. Tissue Engineering - Part A, 2020, 27, 894-904.	3.1	11
24	Impact of Additives on Mechanical Properties of Supramolecular Electrospun Scaffolds. ACS Applied Polymer Materials, 2020, 2, 3742-3748.	4.4	7
25	Supramolecular Additive-Initiated Controlled Atom Transfer Radical Polymerization of Zwitterionic Polymers on Ureido-pyrimidinone-Based Biomaterial Surfaces. Macromolecules, 2020, 53, 4454-4464.	4.8	13
26	Imaging the In Vivo Degradation of Tissue Engineering Implants by Use of Supramolecular Radiopaque Biomaterials. Macromolecular Bioscience, 2020, 20, e2000024.	4.1	8
27	Functional supramolecular bioactivated electrospun mesh improves tissue ingrowth in experimental abdominal wall reconstruction in rats. Acta Biomaterialia, 2020, 106, 82-91.	8.3	33
28	Carbon Nanotube Reinforced Supramolecular Hydrogels for Bioapplications. Macromolecular Bioscience, 2019, 19, e1800173.	4.1	48
29	Injectable Supramolecular Ureidopyrimidinone Hydrogels Provide Sustained Release of Extracellular Vesicle Therapeutics. Advanced Healthcare Materials, 2019, 8, e1900847.	7.6	61
30	Functional peptide presentation on different hydrogen bonding biomaterials using supramolecular additives. Biomaterials, 2019, 224, 119466.	11.4	15
31	A Supramolecular Platform for the Introduction of Fc-Fusion Bioactive Proteins on Biomaterial Surfaces. ACS Applied Polymer Materials, 2019, 1, 2044-2054.	4.4	10
32	The degradation and performance of electrospun supramolecular vascular scaffolds examined upon in vitro enzymatic exposure. Acta Biomaterialia, 2019, 92, 48-59.	8.3	25
33	Supramolecular Modification of a Sequence-Controlled Collagen-Mimicking Polymer. Biomacromolecules, 2019, 20, 2360-2371.	5.4	12
34	Influence of the Assembly State on the Functionality of a Supramolecular Jagged1-Mimicking Peptide Additive. ACS Omega, 2019, 4, 8178-8187.	3.5	9
35	Triple-marker cardiac MRI detects sequential tissue changes of healing myocardium after a hydrogel-based therapy. Scientific Reports, 2019, 9, 19366.	3.3	7
36	Combinatorial functionalization with bisureaâ€peptides and antifouling bisurea additives of a supramolecular elastomeric biomaterial. Journal of Polymer Science, Part B: Polymer Physics, 2019, 57, 1725-1735.	2.1	5

#	Article	IF	CITATIONS
37	Renal Epithelial Monolayer Formation on Monomeric and Polymeric Catechol Functionalized Supramolecular Biomaterials. Macromolecular Bioscience, 2019, 19, e1800300.	4.1	7
38	Supramolecular Antifouling Additives for Robust and Efficient Functionalization of Elastomeric Materials: Molecular Design Matters. Advanced Functional Materials, 2019, 29, 1805375.	14.9	16
39	Supramolecular Hydrogels for Biomedical Applications. Macromolecular Bioscience, 2019, 19, e1800452.	4.1	16
40	Quantifying Guest–Host Dynamics in Supramolecular Assemblies to Analyze Their Robustness. Macromolecular Bioscience, 2019, 19, e1800296.	4.1	8
41	Modulation of macrophage phenotype and protein secretion via heparin-IL-4 functionalized supramolecular elastomers. Acta Biomaterialia, 2018, 71, 247-260.	8.3	65
42	Supramolecular Platform Stabilizing Growth Factors. Biomacromolecules, 2018, 19, 2610-2617.	5.4	11
43	MRI Visualization of Injectable Ureidopyrimidinone Hydrogelators by Supramolecular Contrast Agent Labeling. Advanced Healthcare Materials, 2018, 7, e1701139.	7.6	35
44	Selfâ€Healing Biomaterials: From Molecular Concepts to Clinical Applications. Advanced Materials Interfaces, 2018, 5, 1800118.	3.7	73
45	Introduction of Nature's Complexity in Engineered Bloodâ€compatible Biomaterials. Advanced Healthcare Materials, 2018, 7, 1700505.	7.6	37
46	Supramolecular biomaterials based on ureidopyrimidinone and benzene-1,3,5-tricarboxamide moieties. , 2018, , 177-204.		5
47	Experimental reconstruction of an abdominal wall defect with electrospun polycaprolactone-ureidopyrimidinone mesh conserves compliance yet may have insufficient strength. Journal of the Mechanical Behavior of Biomedical Materials, 2018, 88, 431-441.	3.1	19
48	Cholesterol Modification of an Anticancer Drug for Efficient Incorporation into a Supramolecular Hydrogel System. Macromolecular Rapid Communications, 2018, 39, e1800007.	3.9	13
49	Dual Electrospun Supramolecular Polymer Systems for Selective Cell Migration. Macromolecular Bioscience, 2018, 18, e1800004.	4.1	2
50	Host Response and Neo-Tissue Development during Resorption of a Fast Degrading Supramolecular Electrospun Arterial Scaffold. Bioengineering, 2018, 5, 61.	3.5	24
51	Antimicrobial peptide modification of biomaterials using supramolecular additives. Journal of Polymer Science Part A, 2018, 56, 1926-1934.	2.3	21
52	Controlled Release of RNAi Molecules by Tunable Supramolecular Hydrogel Carriers. Chemistry - an Asian Journal, 2018, 13, 3501-3508.	3.3	17
53	A bioartificial environment for kidney epithelial cells based on a supramolecular polymer basement membrane mimic and an organotypical culture system. Journal of Tissue Engineering and Regenerative Medicine, 2017, 11, 1820-1834.	2.7	27
54	Controlling and tuning the dynamic nature of supramolecular polymers in aqueous solutions. Chemical Communications, 2017, 53, 2279-2282.	4.1	62

IF

CITATIONS

55	In situ heart valve tissue engineering using a bioresorbable elastomeric implant – From material design to 12 months follow-up in sheep. Biomaterials, 2017, 125, 101-117.	11.4	231
56	Efficient Functionalization of Additives at Supramolecular Material Surfaces. Advanced Materials, 2017, 29, 1604652.	21.0	27
57	Supramolecular surface functionalization via catechols for the improvement of cell–material interactions. Biomaterials Science, 2017, 5, 1541-1548.	5.4	18
58	Cell and Protein Fouling Properties of Polymeric Mixtures Containing Supramolecular Poly(ethylene) Tj ETQq0 0 () rgBT /Ov	erlock 10 Tf
59	From supramolecular polymers to multi-component biomaterials. Chemical Society Reviews, 2017, 46, 6621-6637.	38.1	311
60	Cucurbiturilâ€mediated immobilization of fluorescent proteins on supramolecular biomaterials. Journal of Polymer Science Part A, 2017, 55, 3607-3616.	2.3	9
61	Mechanically Robust Electrospun Hydrogel Scaffolds Crosslinked via Supramolecular Interactions. Macromolecular Bioscience, 2017, 17, 1700053.	4.1	14
62	Introduction of anti-fouling coatings at the surface of supramolecular elastomeric materials via post-modification of reactive supramolecular additives. Polymer Chemistry, 2017, 8, 5228-5238.	3.9	36
63	From molecular design to 3D printed life-like materials with unprecedented properties. Current Opinion in Biomedical Engineering, 2017, 2, 43-48.	3.4	13
64	Transplantation of Allogeneic PW1pos/Pax7neg Interstitial Cells EnhanceÂEndogenous Repair of InjuredÂPorcine Skeletal Muscle. JACC Basic To Translational Science, 2017, 2, 717-736.	4.1	4
65	Advances in the Development of Supramolecular Polymeric Biomaterials. , 2017, , 255-282.		1
66	Modular supramolecular ureidopyrimidinone polymer carriers for intracellular delivery. RSC Advances, 2016, 6, 110600-110603.	3.6	20
67	The effect of irradiation by ultraviolet light on ureidoâ€pyrimidinone based biomaterials. Journal of Polymer Science Part A, 2016, 54, 81-90.	2.3	5
68	Early in-situ cellularization of a supramolecular vascular graft is modified by synthetic stromal cell-derived factor-11± derived peptides. Biomaterials, 2016, 76, 187-195.	11.4	95
69	Development of Nonâ€Cell Adhesive Vascular Grafts Using Supramolecular Building Blocks. Macromolecular Bioscience, 2016, 16, 350-362.	4.1	47
70	Multicomponent Supramolecular Polymers as a Modular Platform for Intracellular Delivery. ACS Nano, 2016, 10, 1845-1852.	14.6	81
71	An Injectable and Drug-loaded Supramolecular Hydrogel for Local Catheter Injection into the Pig Heart. Journal of Visualized Experiments, 2015, , e52450.	0.3	14
72	Solid-Phase-Based Synthesis of Ureidopyrimidinone–Peptide ConjugatesÂ-for Supramolecular Biomaterials. Synlett, 2015, 26, 2707-2713.	1.8	23

ARTICLE

#

#	Article	IF	CITATIONS
73	Cucurbit[8]uril templated supramolecular ring structure formation and protein assembly modulation. Chemical Communications, 2015, 51, 3147-3150.	4.1	25
74	Supramolecular Hydrogels for Regenerative Medicine. Advances in Polymer Science, 2015, , 253-279.	0.8	5
75	Convenient formulation and application of a supramolecular ureido-pyrimidinone modified poly(ethylene glycol) carrier for intrarenal growth factor delivery. European Polymer Journal, 2015, 72, 484-493.	5.4	6
76	Cardiac patching and the regeneration of infarcted myocardium: where do we go from here?. Future Cardiology, 2014, 10, 167-170.	1.2	0
77	Mesoscale Characterization of Supramolecular Transient Networks Using SAXS and Rheology. International Journal of Molecular Sciences, 2014, 15, 1096-1111.	4.1	37
78	A Fast pH‣witchable and Selfâ€Healing Supramolecular Hydrogel Carrier for Guided, Local Catheter Injection in the Infarcted Myocardium. Advanced Healthcare Materials, 2014, 3, 70-78.	7.6	261
79	Drug Delivery: A Fast pH-Switchable and Self-Healing Supramolecular Hydrogel Carrier for Guided, Local Catheter Injection in the Infarcted Myocardium (Adv. Healthcare Mater. 1/2014). Advanced Healthcare Materials, 2014, 3, 69-69.	7.6	2
80	Sustained Delivery of Insulin-Like Growth Factor-1/Hepatocyte Growth Factor Stimulates Endogenous Cardiac Repair in the Chronic Infarcted Pig Heart. Journal of Cardiovascular Translational Research, 2014, 7, 232-241.	2.4	93
81	A modular approach to easily processable supramolecular bilayered scaffolds with tailorable properties. Journal of Materials Chemistry B, 2014, 2, 2483-2493.	5.8	61
82	Combining tissue repair and tissue engineering; bioactivating implantable cell-free vascular scaffolds. Heart, 2014, 100, 1825-1830.	2.9	39
83	Post-Assembly Functionalization of Supramolecular Nanostructures with Bioactive Peptides and Fluorescent Proteins by Native Chemical Ligation. Bioconjugate Chemistry, 2014, 25, 707-717.	3.6	36
84	Tough Stimuli-Responsive Supramolecular Hydrogels with Hydrogen-Bonding Network Junctions. Journal of the American Chemical Society, 2014, 136, 6969-6977.	13.7	525
85	Self-Assembly of Chiral Supramolecular Ureido-Pyrimidinone-Based Poly(ethylene glycol) Polymers via Multiple Pathways. Macromolecules, 2014, 47, 3823-3828.	4.8	13
86	Core–Shell Capsules Based on Supramolecular Hydrogels Show Shellâ€Related Erosion and Release Due to Confinement. Macromolecular Bioscience, 2013, 13, 77-83.	4.1	9
87	From Molecular Structure to Macromolecular Organization: Keys to Design Supramolecular Biomaterials. Macromolecules, 2013, 46, 8528-8537.	4.8	25
88	Mesoscale Modulation of Supramolecular Ureidopyrimidinone-Based Poly(ethylene glycol) Transient Networks in Water. Journal of the American Chemical Society, 2013, 135, 11159-11164.	13.7	86
89	Modular synthesis of supramolecular ureidopyrimidinone–peptide conjugates using an oxime ligation strategy. Chemical Communications, 2012, 48, 1452-1454.	4.1	23
90	Hierarchical Formation of Supramolecular Transient Networks in Water: A Modular Injectable Delivery System. Advanced Materials, 2012, 24, 2703-2709.	21.0	247

#	Article	IF	CITATIONS
91	Development and in-vivo characterization of supramolecular hydrogels for intrarenal drug delivery. Biomaterials, 2012, 33, 5144-5155.	11.4	78
92	Aggregation of Ureido-Pyrimidinone Supramolecular Thermoplastic Elastomers into Nanofibers: A Kinetic Analysis. Macromolecules, 2011, 44, 6776-6784.	4.8	163
93	From kidney development to drug delivery and tissue engineering strategies in renal regenerative medicine. Journal of Controlled Release, 2011, 152, 177-185.	9.9	22
94	Peptide functionalised discotic amphiphiles and their self-assembly into supramolecular nanofibres. Soft Matter, 2011, 7, 7980.	2.7	27
95	Substrates for cardiovascular tissue engineering. Advanced Drug Delivery Reviews, 2011, 63, 221-241.	13.7	235
96	Bioengineering of living renal membranes consisting of hierarchical, bioactive supramolecular meshes and human tubular cells. Biomaterials, 2011, 32, 723-733.	11.4	88
97	Multicomponent supramolecular thermoplastic elastomer with peptideâ€modified nanofibers. Journal of Polymer Science Part A, 2011, 49, 1764-1771.	2.3	33
98	Enzymatic Activity at the Surface of Biomaterials via Supramolecular Anchoring of Peptides: The Effect of Material Processing. Macromolecular Bioscience, 2011, 11, 1706-1712.	4.1	10
99	The Use of Fibrous, Supramolecular Membranes and Human Tubular Cells for Renal Epithelial Tissue Engineering: Towards a Suitable Membrane for a Bioartificial Kidney. Macromolecular Bioscience, 2010, 10, 1345-1354.	4.1	49
100	TOF-Secondary Ion Mass Spectrometry Imaging of Polymeric Scaffolds with Surrounding Tissue after in Vivo Implantation. Analytical Chemistry, 2010, 82, 4337-4343.	6.5	34
101	C60+ Secondary Ion Microscopy Using a Delay Line Detector. Analytical Chemistry, 2010, 82, 801-807.	6.5	26
102	Endothelial progenitor cell dysfunction in patients with progressive chronic kidney disease. American Journal of Physiology - Renal Physiology, 2009, 296, F1314-F1322.	2.7	70
103	Collagen Targeting Using Protein-Functionalized Micelles: The Strength of Multiple Weak Interactions. Journal of the American Chemical Society, 2009, 131, 7304-7312.	13.7	42
104	The Small Heat-Shock Proteins HSPB2 and HSPB3 Form Well-defined Heterooligomers in a Unique 3 to 1 Subunit Ratio. Journal of Molecular Biology, 2009, 393, 1022-1032.	4.2	50
105	Supramolecular Biomaterials. A Modular Approach towards Tissue Engineering. Bulletin of the Chemical Society of Japan, 2007, 80, 2047-2073.	3.2	121
106	Material dependent differences in inflammatory gene expression by giant cells during the foreign body reaction. Journal of Biomedical Materials Research - Part A, 2007, 83A, 879-886.	4.0	34
107	Convenient Solid-Phase Synthesis of Ureido-Pyrimidinone Modified Peptides. European Journal of Organic Chemistry, 2007, 2007, 3622-3632.	2.4	27
108	Efficient differentiation of CD14+ monocytic cells into endothelial cells on degradable biomaterials. Biomaterials, 2007, 28, 1470-1479.	11.4	41

#	Article	IF	CITATIONS
109	Molecular Recognition in Poly(ε-caprolactone)-Based Thermoplastic Elastomers. Biomacromolecules, 2006, 7, 3385-3395.	5.4	64
110	Oligo(trimethylene carbonate)-Based Supramolecular Biomaterials. Macromolecules, 2006, 39, 8763-8771.	4.8	90
111	Chemical and biological properties of supramolecular polymer systems based on oligocaprolactones. Biomaterials, 2006, 27, 5490-5501.	11.4	94
112	A modular and supramolecular approach to bioactive scaffolds for tissue engineering. Nature Materials, 2005, 4, 568-574.	27.5	410
113	Disulfide Exchange in Hydrogen-Bonded Cyclic Assemblies:  Stereochemical Self-Selection by Double Dynamic Chemistry. Journal of Organic Chemistry, 2005, 70, 5799-5803.	3.2	42
114	Forced Peptide Synthesis in Nanoscale Confinement under Elastomeric Stamps. Angewandte Chemie - International Edition, 2004, 43, 4190-4193.	13.8	60
115	Enantioselective Cyclization of Racemic Supramolecular Polymers. Journal of the American Chemical Society, 2003, 125, 6860-6861.	13.7	65
116	Materiomics using synthetic materials: metals, cements, covalent polymers and supramolecular systems. , 0, , 31-50.		0