Bassem Al-Sady

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6700714/publications.pdf Version: 2024-02-01

RASSEM AL-SADY

#	Article	IF	CITATIONS
1	Photoactivated Phytochrome Induces Rapid PIF3 Phosphorylation Prior to Proteasome-Mediated Degradation. Molecular Cell, 2006, 23, 439-446.	9.7	481
2	PHYTOCHROME-INTERACTING FACTOR 1 Is a Critical bHLH Regulator of Chlorophyll Biosynthesis. Science, 2004, 305, 1937-1941.	12.6	434
3	The <i>Arabidopsis</i> Phytochrome-Interacting Factor PIF7, Together with PIF3 and PIF4, Regulates Responses to Prolonged Red Light by Modulating phyB Levels. Plant Cell, 2008, 20, 337-352.	6.6	334
4	A Novel Molecular Recognition Motif Necessary for Targeting Photoactivated Phytochrome Signaling to Specific Basic Helix-Loop-Helix Transcription Factors[W]. Plant Cell, 2004, 16, 3033-3044.	6.6	314
5	The phytochrome-interacting transcription factor, PIF3, acts early, selectively, and positively in light-induced chloroplast development. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 16091-16098.	7.1	275
6	Chromodomain-Mediated Oligomerization of HP1 Suggests a Nucleosome-Bridging Mechanism for Heterochromatin Assembly. Molecular Cell, 2011, 41, 67-81.	9.7	262
7	Dynamic Antagonism between Phytochromes and PIF Family Basic Helix-Loop-Helix Factors Induces Selective Reciprocal Responses to Light and Shade in a Rapidly Responsive Transcriptional Network in <i>Arabidopsis</i> . Plant Cell, 2012, 24, 1398-1419.	6.6	199
8	Division of Labor between the Chromodomains of HP1 and Suv39 Methylase Enables Coordination of Heterochromatin Spread. Molecular Cell, 2013, 51, 80-91.	9.7	125
9	Nuclear translocation of the photoreceptor phytochrome B is necessary for its biological function in seedling photomorphogenesis. Plant Journal, 2003, 35, 660-664.	5.7	117
10	Molecular convergence of clock and photosensory pathways through PIF3–TOC1 interaction and co-occupancy of target promoters. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 4870-4875.	7.1	115
11	Mechanistic duality of transcription factor function in phytochrome signaling. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 2232-2237.	7.1	105
12	Out of the dark: how the PIFs are unmasking a dual temporal mechanism of phytochrome signalling. Journal of Experimental Botany, 2007, 58, 3125-3133.	4.8	66
13	Noncoding RNA-nucleated heterochromatin spreading is intrinsically labile and requires accessory elements for epigenetic stability. ELife, 2018, 7, .	6.0	30
14	Reconstitution of Nucleosome Demethylation and Catalytic Properties of a Jumonji Histone Demethylase. Chemistry and Biology, 2013, 20, 494-499.	6.0	27
15	Set1/COMPASS repels heterochromatin invasion at euchromatic sites by disrupting Suv39/Clr4 activity and nucleosome stability. Genes and Development, 2020, 34, 99-117.	5.9	26
16	Sensitive and Quantitative Three-Color Protein Imaging in Fission Yeast Using Spectrally Diverse, Recoded Fluorescent Proteins with Experimentally-Characterized In Vivo Maturation Kinetics. PLoS ONE, 2016, 11, e0159292.	2.5	16
17	Heterodimerization of H3K9 histone methyltransferases G9a and GLP activates methyl reading and writing capabilities. Journal of Biological Chemistry, 2021, 297, 101276.	3.4	16
18	The histone chaperone FACT facilitates heterochromatin spreading by regulating histone turnover and H3K9 methylation states. Cell Reports, 2021, 37, 109944.	6.4	16

BASSEM AL-SADY

#	Article	IF	CITATIONS
19	Intrinsic Toxicity of Unchecked Heterochromatin Spread Is Suppressed by Redundant Chromatin Boundary Functions in <i>Schizosacchromyces pombe</i> . G3: Genes, Genomes, Genetics, 2015, 5, 1453-1461.	1.8	13
20	Epigenetic fates of gene silencing established by heterochromatin spreading in cell identity and genome stability. Current Genetics, 2019, 65, 423-428.	1.7	7
21	Local chromatin context regulates the genetic requirements of the heterochromatin spreading reaction. PLoS Genetics, 2022, 18, e1010201.	3.5	6
22	Chromatin Curtains: A Single-Molecule Method for Visualizing Histone Marks on Chromatin Substrates In Vitro. Biophysical Journal, 2018, 114, 254a.	0.5	0