Hae-Won Kim

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/670062/hae-won-kim-publications-by-year.pdf

Version: 2024-04-11

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

 446
 20,519
 73
 119

 papers
 citations
 h-index
 g-index

 463
 23,361
 7
 7.28

 ext. papers
 ext. citations
 avg, IF
 L-index

#	Paper	IF	Citations
446	TLR4 downregulation by the RNA-binding protein PUM1 alleviates cellular aging and osteoarthritis <i>Cell Death and Differentiation</i> , 2022 ,	12.7	1
445	Recent advances in drug delivery systems for glaucoma treatment. <i>Materials Today Nano</i> , 2022 , 100178	9.7	6
444	CRISPR-Cas12a-regulated DNA adsorption and metallization on MXenes as enhanced enzyme mimics for sensitive colorimetric detection of hepatitis B virus DNA <i>Journal of Colloid and Interface Science</i> , 2022 , 613, 406-414	9.3	6
443	Multifunctional GelMA platforms with nanomaterials for advanced tissue therapeutics. <i>Bioactive Materials</i> , 2022 , 8, 267-295	16.7	30
442	Restoration of olfactory dysfunctions by nanomaterials and stem cells-based therapies: Current status and future perspectives <i>Journal of Tissue Engineering</i> , 2022 , 13, 20417314221083414	7.5	1
441	Tuning the properties of inorganic nanomaterials for theranostic applications in infectious diseases: Carbon nanotubes, quantum dots, graphene, and mesoporous carbon nanoparticles 2022 , 319	-352	
440	Inorganic nanomaterials for improved angiogenesis 2022 , 335-359		
439	Leveraging cellular mechano-responsiveness for cancer therapy <i>Trends in Molecular Medicine</i> , 2021	11.5	2
438	Investigating the mechanophysical and biological characteristics of therapeutic dental cement incorporating copper doped bioglass nanoparticles <i>Dental Materials</i> , 2021 , 38, 363-363	5.7	3
437	Carbon nanomaterials as emerging nanotherapeutic platforms to tackle the rising tide of cancer - A review. <i>Bioorganic and Medicinal Chemistry</i> , 2021 , 51, 116493	3.4	4
436	Freeform 3D printing of vascularized tissues: Challenges and strategies. <i>Journal of Tissue Engineering</i> , 2021 , 12, 20417314211057236	7.5	3
435	A Study on Myogenesis by Regulation of Reactive Oxygen Species and Cytotoxic Activity by Selenium Nanoparticles. <i>Antioxidants</i> , 2021 , 10,	7.1	2
434	Utilization of GelMA with phosphate glass fibers for glial cell alignment. <i>Journal of Biomedical Materials Research - Part A</i> , 2021 , 109, 2212-2224	5.4	4
433	Mussel Inspired Chemistry and Bacteria Derived Polymers for Oral Mucosal Adhesion and Drug Delivery. <i>Frontiers in Bioengineering and Biotechnology</i> , 2021 , 9, 663764	5.8	2
432	Scaffold-mediated CRISPR-Cas9 delivery system for acute myeloid leukemia therapy. <i>Science Advances</i> , 2021 , 7,	14.3	15
431	The eggshell membrane: A potential biomaterial for corneal wound healing. <i>Journal of Biomaterials Applications</i> , 2021 , 36, 912-929	2.9	4
430	Research Models of the Nanoparticle-Mediated Drug Delivery across the Blood-Brain Barrier. <i>Tissue Engineering and Regenerative Medicine</i> , 2021 , 18, 917-930	4.5	1

(2021-2021)

429	Spatiotemporal control of CRISPR/Cas9 gene editing. <i>Signal Transduction and Targeted Therapy</i> , 2021 , 6, 238	21	14	
428	Iron ions-releasing mesoporous bioactive glass ultrasmall nanoparticles designed as ferroptosis-based bone cancer nanotherapeutics: Ultrasonic-coupled solgel synthesis, properties and iron ions release. <i>Materials Letters</i> , 2021 , 294, 129759	3.3	6	
427	Protein-reactive nanofibrils decorated with cartilage-derived decellularized extracellular matrix for osteochondral defects. <i>Biomaterials</i> , 2021 , 269, 120214	15.6	20	
426	Nanotherapeutics for regeneration of degenerated tissue infected by bacteria through the multiple delivery of bioactive ions and growth factor with antibacterial/angiogenic and osteogenic/odontogenic capacity. <i>Bioactive Materials</i> , 2021 , 6, 123-136	16.7	25	
425	Materials roles for promoting angiogenesis in tissue regeneration. <i>Progress in Materials Science</i> , 2021 , 117, 100732	42.2	36	
424	Ceria-Incorporated Biopolymer for Preventing Fungal Adhesion. <i>ACS Biomaterials Science and Engineering</i> , 2021 , 7, 1808-1816	5.5	1	
423	Antibacterial, proangiogenic, and osteopromotive nanoglass paste coordinates regenerative process following bacterial infection in hard tissue. <i>Biomaterials</i> , 2021 , 268, 120593	15.6	14	
422	Emerging biogenesis technologies of extracellular vesicles for tissue regenerative therapeutics. Journal of Tissue Engineering, 2021 , 12, 20417314211019015	7.5	4	
421	Three dimensional porous scaffolds derived from collagen, elastin and fibrin proteins orchestrate adipose tissue regeneration. <i>Journal of Tissue Engineering</i> , 2021 , 12, 20417314211019238	7.5	3	
420	The Effect of Selenium Nanoparticles on the Osteogenic Differentiation of MC3T3-E1 Cells. <i>Nanomaterials</i> , 2021 , 11,	5.4	5	
419	Selenium Nanoparticles as Candidates for Antibacterial Substitutes and Supplements against Multidrug-Resistant Bacteria. <i>Biomolecules</i> , 2021 , 11,	5.9	9	
418	Nano/micro-structured poly(?-caprolactone)/gelatin nanofibers with biomimetically-grown hydroxyapatite spherules: High protein adsorption, controlled protein delivery and sustained bioactive ions release designed as a multifunctional bone regenerative membrane. <i>Ceramics</i>	5.1	5	
417	Mechanistic Pathways for the Molecular Step Growth of Calcium Oxalate Monohydrate Crystal Revealed by In Situ Liquid-Phase Atomic Force Microscopy. <i>ACS Applied Materials & Discrete Amp; Interfaces</i> , 2021 , 13, 37873-37882	9.5	О	
416	Therapeutic tissue regenerative nanohybrids self-assembled from bioactive inorganic core / chitosan shell nanounits. <i>Biomaterials</i> , 2021 , 274, 120857	15.6	5	
415	Electricity auto-generating skin patch promotes wound healing process by activation of mechanosensitive ion channels. <i>Biomaterials</i> , 2021 , 275, 120948	15.6	3	
414	Dual actions of osteoclastic-inhibition and osteogenic-stimulation through strontium-releasing bioactive nanoscale cement imply biomaterial-enabled osteoporosis therapy. <i>Biomaterials</i> , 2021 , 276, 121025	15.6	13	
413	Sol-gel synthesis and characterization of novel cobalt ions-containing mesoporous bioactive glass nanospheres as hypoxia and ferroptosis-inducing nanotherapeutics. <i>Journal of Non-Crystalline Solids</i> , 2021 , 569, 120999	3.9	0	
412	Antioxidant cerium ions-containing mesoporous bioactive glass ultrasmall nanoparticles: Structural, physico-chemical, catalase-mimic and biological properties. <i>Colloids and Surfaces B: Biointerfaces</i> , 2021 , 206, 111932	6	2	

411	Optimally dosed nanoceria attenuates osteoarthritic degeneration of joint cartilage and subchondral bone. <i>Chemical Engineering Journal</i> , 2021 , 422, 130066	14.7	2
410	Grapefruit Seed Extract as a Natural Derived Antibacterial Substance against Multidrug-Resistant Bacteria. <i>Antibiotics</i> , 2021 , 10,	4.9	6
409	Molecularly Imprinted Polymers and Electrospinning: Manufacturing Convergence for Next-Level Applications. <i>Advanced Functional Materials</i> , 2020 , 30, 2001955	15.6	21
408	Mechanophysical and biological properties of a 3D-printed titanium alloy for dental applications. <i>Dental Materials</i> , 2020 , 36, 945-958	5.7	20
407	Coating biopolymer nanofibers with carbon nanotubes accelerates tissue healing and bone regeneration through orchestrated cell- and tissue-regulatory responses. <i>Acta Biomaterialia</i> , 2020 , 108, 97-110	10.8	27
406	Targeting with nanoparticles for the therapeutic treatment of brain diseases. <i>Journal of Tissue Engineering</i> , 2020 , 11, 2041731419897460	7.5	19
405	3D culture technologies of cancer stem cells: promising ex vivo tumor models. <i>Journal of Tissue Engineering</i> , 2020 , 11, 2041731420933407	7.5	24
404	Nanoscale Calcium Salt-Based Formulations As Potential Therapeutics for Osteoporosis. <i>ACS Biomaterials Science and Engineering</i> , 2020 , 6, 4604-4613	5.5	4
403	Revascularization and limb salvage following critical limb ischemia by nanoceria-induced Ref-1/APE1-dependent angiogenesis. <i>Biomaterials</i> , 2020 , 242, 119919	15.6	29
402	Nano-graphene oxide/polyurethane nanofibers: mechanically flexible and myogenic stimulating matrix for skeletal tissue engineering. <i>Journal of Tissue Engineering</i> , 2020 , 11, 2041731419900424	7.5	29
401	Label-Free Fluorescent Mesoporous Bioglass for Drug Delivery, Optical Triple-Mode Imaging, and Photothermal/Photodynamic Synergistic Cancer Therapy <i>ACS Applied Bio Materials</i> , 2020 , 3, 2218-2229	9 ^{4.1}	16
400	Decellularized brain matrix enhances macrophage polarization and functional improvements in rat spinal cord injury. <i>Acta Biomaterialia</i> , 2020 , 101, 357-371	10.8	28
399	Novel bone-mimetic nanohydroxyapatite/collagen porous scaffolds biomimetically mineralized from surface silanized mesoporous nanobioglass/collagen hybrid scaffold: Physicochemical, mechanical and in vivo evaluations. <i>Materials Science and Engineering C</i> , 2020 , 110, 110660	8.3	23
398	Development of Bis-GMA-free biopolymer to avoid estrogenicity. <i>Dental Materials</i> , 2020 , 36, 157-166	5.7	4
397	RNA interference in glial cells for nerve injury treatment. <i>Journal of Tissue Engineering</i> , 2020 , 11, 20417.	3 ქ . 4 209	939224
396	Biomedical Waste Management by Using Nanophotocatalysts: The Need for New Options. <i>Materials</i> , 2020 , 13,	3.5	14
395	Characterisation of osteogenic and vascular responses of hMSCs to Ti-Co doped phosphate glass microspheres using a microfluidic perfusion platform. <i>Journal of Tissue Engineering</i> , 2020 , 11, 20417314	2 ⁷ 0 ⁵ 54	712
394	Quantum Dots: A Review from Concept to Clinic. <i>Biotechnology Journal</i> , 2020 , 15, e2000117	5.6	33

(2019-2020)

393	"Hard" ceramics for "Soft" tissue engineering: Paradox or opportunity?. <i>Acta Biomaterialia</i> , 2020 , 115, 1-28	10.8	27
392	Electrospun Nanofibers for Improved Angiogenesis: Promises for Tissue Engineering Applications. <i>Nanomaterials</i> , 2020 , 10,	5.4	44
391	Decellularized pulp matrix as scaffold for mesenchymal stem cell mediated bone regeneration. Journal of Tissue Engineering, 2020 , 11, 2041731420981672	7.5	5
390	Synthesis, Characterization, and 3D Printing of an Isosorbide-Based, Light-Curable, Degradable Polymer for Potential Application in Maxillofacial Reconstruction. <i>ACS Biomaterials Science and Engineering</i> , 2020 , 6, 2578-2587	5.5	3
389	Hierarchical microchanneled scaffolds modulate multiple tissue-regenerative processes of immune-responses, angiogenesis, and stem cell homing. <i>Biomaterials</i> , 2020 , 227, 119548	15.6	53
388	Comparative study of photoinitiators for the synthesis and 3D printing of a light-curable, degradable polymer for custom-fit hard tissue implants. <i>Biomedical Materials (Bristol)</i> , 2020 , 16, 015007	3.5	1
387	Advances in nanoparticle development for improved therapeutics delivery: nanoscale topographical aspect. <i>Journal of Tissue Engineering</i> , 2019 , 10, 2041731419877528	7.5	46
386	Mesoporous bioactive glasses (MBGs) in cancer therapy: Full of hope and promise. <i>Materials Letters</i> , 2019 , 251, 241-246	3.3	36
385	Carbon nanotube incorporation in PMMA to prevent microbial adhesion. <i>Scientific Reports</i> , 2019 , 9, 492	14.9	31
384	Anti-inflammatory actions of folate-functionalized bioactive ion-releasing nanoparticles imply drug-free nanotherapy of inflamed tissues. <i>Biomaterials</i> , 2019 , 207, 23-38	15.6	29
383	Assessing behaviour of osteoblastic cells in dynamic culture conditions using titanium-doped phosphate glass microcarriers. <i>Journal of Tissue Engineering</i> , 2019 , 10, 2041731419825772	7·5	8
382	Control of stem cell response and bone growth on biomaterials by fully non-peptidic integrin selective ligands. <i>Biomaterials Science</i> , 2019 , 7, 1281-1285	7.4	8
381	Differential chondro- and osteo-stimulation in three-dimensional porous scaffolds with different topological surfaces provides a design strategy for biphasic osteochondral engineering. <i>Journal of Tissue Engineering</i> , 2019 , 10, 2041731419826433	7.5	15
380	SIS/aligned fibre scaffold designed to meet layered oesophageal tissue complexity and properties. <i>Acta Biomaterialia</i> , 2019 , 99, 181-195	10.8	17
379	Performance of a glucose-reactive enzyme-based biofuel cell system for biomedical applications. <i>Scientific Reports</i> , 2019 , 9, 10872	4.9	20
378	Ceria-incorporated MTA for accelerating odontoblastic differentiation via ROS downregulation. <i>Dental Materials</i> , 2019 , 35, 1291-1299	5.7	14
377	Characterization of an anti-foaming and fast-setting gypsum for dental stone. <i>Dental Materials</i> , 2019 , 35, 1728-1739	5.7	1
376	Evaluation of Strontium-Doped Nanobioactive Glass Cement for Dentin-Pulp Complex Regeneration Therapy. <i>ACS Biomaterials Science and Engineering</i> , 2019 , 5, 6117-6126	5.5	17

375	Depth-Dependent Cellular Response from Dental Bulk-Fill Resins in Human Dental Pulp Stem Cells. Stem Cells International, 2019 , 2019, 1251536	5	3
374	Combined Effects of Nanoroughness and Ions Produced by Electrodeposition of Mesoporous Bioglass Nanoparticle for Bone Regeneration <i>ACS Applied Bio Materials</i> , 2019 , 2, 5190-5203	4.1	11
373	Angiogenesis-promoted bone repair with silicate-shelled hydrogel fiber scaffolds. <i>Biomaterials Science</i> , 2019 , 7, 5221-5231	7.4	21
372	Advanced drug delivery systems and artificial skin grafts for skin wound healing. <i>Advanced Drug Delivery Reviews</i> , 2019 , 146, 209-239	18.5	170
371	Dual-ion delivery for synergistic angiogenesis and bactericidal capacity with silica-based microsphere. <i>Acta Biomaterialia</i> , 2019 , 83, 322-333	10.8	30
370	Role of nuclear mechanosensitivity in determining cellular responses to forces and biomaterials. <i>Biomaterials</i> , 2019 , 197, 60-71	15.6	28
369	Carbon-based nanomaterials as an emerging platform for theranostics. <i>Materials Horizons</i> , 2019 , 6, 434-4	1 694	173
368	Cancer Mechanobiology: Microenvironmental Sensing and Metastasis. <i>ACS Biomaterials Science and Engineering</i> , 2019 , 5, 3735-3752	5.5	19
367	Bone Tissue Engineering Using Human Cells: A Comprehensive Review on Recent Trends, Current Prospects, and Recommendations. <i>Applied Sciences (Switzerland)</i> , 2019 , 9, 174	2.6	34
366	Combinatory Cancer Therapeutics with Nanoceria-Capped Mesoporous Silica Nanocarriers through pH-triggered Drug Release and Redox Activity. <i>ACS Applied Materials & Drug Release and Redox Activity</i> . <i>ACS Applied Materials & Drug Release and Redox Activity</i> .	9.5	34
365	Curcumin in tissue engineering: A traditional remedy for modern medicine. <i>BioFactors</i> , 2019 , 45, 135-151	6.1	31
364	Electrophoretic coatings of hydroxyapatite with various nanocrystal shapes. <i>Materials Letters</i> , 2019 , 234, 148-154	3.3	24
363	Anti-bacterial zinc-doped calcium silicate cements: Bone filler. <i>Ceramics International</i> , 2018 , 44, 13031-13	3038	21
362	Emerging properties of hydrogels in tissue engineering. <i>Journal of Tissue Engineering</i> , 2018 , 9, 20417314	/ 1. 8 768	3285
361	Multi-functional nano-adhesive releasing therapeutic ions for MMP-deactivation and remineralization. <i>Scientific Reports</i> , 2018 , 8, 5663	4.9	27
360	Silk fibroin/collagen protein hybrid cell-encapsulating hydrogels with tunable gelation and improved physical and biological properties. <i>Acta Biomaterialia</i> , 2018 , 69, 218-233	10.8	61
359	Nanocements produced from mesoporous bioactive glass nanoparticles. <i>Biomaterials</i> , 2018 , 162, 183-19	9 5.6	44
358	Nano-graphene oxide incorporated into PMMA resin to prevent microbial adhesion. <i>Dental Materials</i> , 2018 , 34, e63-e72	5.7	52

357	Feasibility of Defect Tunable Bone Engineering Using Electroblown Bioactive Fibrous Scaffolds with Dental Stem Cells. <i>ACS Biomaterials Science and Engineering</i> , 2018 , 4, 1019-1028	5.5	10	
356	Donor Variability in Growth Kinetics of Healthy hMSCs Using Manual Processing: Considerations for Manufacture of Cell Therapies. <i>Biotechnology Journal</i> , 2018 , 13, 1700085	5.6	9	
355	Zirconia-incorporated zinc oxide eugenol has improved mechanical properties and cytocompatibility with human dental pulp stem cells. <i>Dental Materials</i> , 2018 , 34, 132-142	5.7	4	
354	The Osteogenic Differentiation Effect of the FN Type 10-Peptide Amphiphile on PCL Fiber. <i>International Journal of Molecular Sciences</i> , 2018 , 19,	6.3	5	
353	Greater cellular stiffness in fibroblasts from patients with idiopathic pulmonary fibrosis. <i>American Journal of Physiology - Lung Cellular and Molecular Physiology</i> , 2018 , 315, L59-L65	5.8	20	
352	Chondrogenic Potential of Dedifferentiated Rat Chondrocytes Reevaluated in Two- and Three-Dimensional Culture Conditions. <i>Tissue Engineering and Regenerative Medicine</i> , 2018 , 15, 163-172	4.5	2	
351	Reformulated mineral trioxide aggregate components and the assessments for use as future dental regenerative cements. <i>Journal of Tissue Engineering</i> , 2018 , 9, 2041731418807396	7.5	14	
350	Auditory disorders and future therapies with delivery systems. <i>Journal of Tissue Engineering</i> , 2018 , 9, 2041731418808455	7.5	15	
349	Biomedical applications of nanoceria: new roles for an old player. <i>Nanomedicine</i> , 2018 , 13, 3051-3069	5.6	55	
348	Mesoporous bioactive glasses: Promising platforms for antibacterial strategies. <i>Acta Biomaterialia</i> , 2018 , 81, 1-19	10.8	99	
347	Efficacy of collagen and alginate hydrogels for the prevention of rat chondrocyte dedifferentiation. Journal of Tissue Engineering, 2018 , 9, 2041731418802438	7.5	25	
346	Intra-articular biomaterials-assisted delivery to treat temporomandibular joint disorders. <i>Journal of Tissue Engineering</i> , 2018 , 9, 2041731418776514	7.5	26	
345	Non-thermal atmospheric pressure plasma functionalized dental implant for enhancement of bacterial resistance and osseointegration. <i>Dental Materials</i> , 2017 , 33, 257-270	5.7	41	
344	Progress in Nanotheranostics Based on Mesoporous Silica Nanomaterial Platforms. <i>ACS Applied Materials & Materials</i>	9.5	84	
343	Biological Effects of Provisional Resin Materials on Human Dental Pulp Stem Cells. <i>Operative Dentistry</i> , 2017 , 42, E81-E92	2.9	6	
342	A mini review focused on the proangiogenic role of silicate ions released from silicon-containing biomaterials. <i>Journal of Tissue Engineering</i> , 2017 , 8, 2041731417707339	7.5	72	
341	CRISPR/Cas9-Based Genome Editing for Disease Modeling and Therapy: Challenges and Opportunities for Nonviral Delivery. <i>Chemical Reviews</i> , 2017 , 117, 9874-9906	68.1	287	
340	Sol-gel-derived bioactive glass nanoparticle-incorporated glass ionomer cement with or without chitosan for enhanced mechanical and biomineralization properties. <i>Dental Materials</i> , 2017 , 33, 805-817	,5.7	41	

339	Extra- and intra-cellular fate of nanocarriers under dynamic interactions with biology. <i>Nano Today</i> , 2017 , 14, 84-99	17.9	34
338	Silica-based multifunctional nanodelivery systems toward regenerative medicine. <i>Materials Horizons</i> , 2017 , 4, 772-799	14.4	53
337	Optical imaging and anticancer chemotherapy through carbon dot created hollow mesoporous silica nanoparticles. <i>Acta Biomaterialia</i> , 2017 , 55, 466-480	10.8	52
336	Application of induced pluripotent stem cells to model smooth muscle cell function in vascular diseases. <i>Current Opinion in Biomedical Engineering</i> , 2017 , 1, 38-44	4.4	9
335	Ultrahigh protein adsorption capacity and sustained release of nanocomposite scaffolds: implication for growth factor delivery systems. <i>RSC Advances</i> , 2017 , 7, 16453-16459	3.7	7
334	Synergetic Cues of Bioactive Nanoparticles and Nanofibrous Structure in Bone Scaffolds to Stimulate Osteogenesis and Angiogenesis. <i>ACS Applied Materials & District Action States</i> , 2017, 9, 2059-2073	9.5	42
333	Nano-shape varied cerium oxide nanomaterials rescue human dental stem cells from oxidative insult through intracellular or extracellular actions. <i>Acta Biomaterialia</i> , 2017 , 50, 142-153	10.8	35
332	Silk scaffolds in bone tissue engineering: An overview. <i>Acta Biomaterialia</i> , 2017 , 63, 1-17	10.8	158
331	Intracellular co-delivery of Sr ion and phenamil drug through mesoporous bioglass nanocarriers synergizes BMP signaling and tissue mineralization. <i>Acta Biomaterialia</i> , 2017 , 60, 93-108	10.8	57
330	Functional Recovery of Contused Spinal Cord in Rat with the Injection of Optimal-Dosed Cerium Oxide Nanoparticles. <i>Advanced Science</i> , 2017 , 4, 1700034	13.6	42
329	Biomimetically grown apatite spheres from aggregated bioglass nanoparticles with ultrahigh porosity and surface area imply potential drug delivery and cell engineering applications. <i>Acta Biomaterialia</i> , 2017 , 60, 38-49	10.8	14
328	Towards modular bone tissue engineering using Ti-Co-doped phosphate glass microspheres: cytocompatibility and dynamic culture studies. <i>Journal of Biomaterials Applications</i> , 2017 , 32, 295-310	2.9	9
327	Rechargeable microbial anti-adhesive polymethyl methacrylate incorporating silver sulfadiazine-loaded mesoporous silica nanocarriers. <i>Dental Materials</i> , 2017 , 33, e361-e372	5.7	30
326	Effects of Type I Collagen Concentration in Hydrogel on the Growth and Phenotypic Expression of Rat Chondrocytes. <i>Tissue Engineering and Regenerative Medicine</i> , 2017 , 14, 383-391	4.5	18
325	Drug/ion co-delivery multi-functional nanocarrier to regenerate infected tissue defect. <i>Biomaterials</i> , 2017 , 142, 62-76	15.6	48
324	Co-culture of Human Dental Pulp Stem Cells and Endothelial Cells Using Porous Biopolymer Microcarriers: A Feasibility Study for Bone Tissue Engineering. <i>Tissue Engineering and Regenerative Medicine</i> , 2017 , 14, 393-401	4.5	10
323	Immunomodulatory/anti-inflammatory effect of ZOE-based dental materials. <i>Dental Materials</i> , 2017 , 33, e1-e12	5.7	19
322	Biomaterials and Culture Technologies for Regenerative Therapy of Liver Tissue. <i>Advanced Healthcare Materials</i> , 2017 , 6, 1600791	10.1	17

(2016-2017)

321	Promoting angiogenesis with mesoporous microcarriers through a synergistic action of delivered silicon ion and VEGF. <i>Biomaterials</i> , 2017 , 116, 145-157	15.6	102
320	Prospects of peripheral nerve tissue engineering using nerve guide conduits based on silk fibroin protein and other biopolymers. <i>International Materials Reviews</i> , 2017 , 62, 367-391	16.1	43
319	Inhibition of osteoclastogenesis through siRNA delivery with tunable mesoporous bioactive nanocarriers. <i>Acta Biomaterialia</i> , 2016 , 29, 352-364	10.8	29
318	Potential of inherent RGD containing silk fibroin-poly (Etaprolactone) nanofibrous matrix for bone tissue engineering. <i>Cell and Tissue Research</i> , 2016 , 363, 525-40	4.2	31
317	Surface guidance of stem cell behavior: Chemically tailored co-presentation of integrin-binding peptides stimulates osteogenic differentiation in vitro and bone formation in vivo. <i>Acta Biomaterialia</i> , 2016 , 43, 269-281	10.8	40
316	C-Dot Generated Bioactive Organosilica Nanospheres in Theranostics: Multicolor Luminescent and Photothermal Properties Combined with Drug Delivery Capacity. <i>ACS Applied Materials & Lamp; Interfaces,</i> 2016 , 8, 24433-44	9.5	35
315	Delivery of Small Genetic Molecules through Hollow Porous Nanoparticles Silences Target Gene and in Turn Stimulates Osteoblastic Differentiation. <i>Particle and Particle Systems Characterization</i> , 2016 , 33, 878-886	3.1	4
314	Osteopromoting Reservoir of Stem Cells: Bioactive Mesoporous Nanocarrier/Collagen Gel through Slow-Releasing FGF18 and the Activated BMP Signaling. <i>ACS Applied Materials & Discrete Solution</i> 2016, 8, 27573-27584	9.5	23
313	Alginate-hyaluronic acid-collagen composite hydrogel favorable for the culture of chondrocytes and their phenotype maintenance. <i>Tissue Engineering and Regenerative Medicine</i> , 2016 , 13, 538-546	4.5	37
312	Nanohybrid Electro-Coatings Toward Therapeutic Implants with Controlled Drug Delivery Potential for Bone Regeneration. <i>Journal of Biomedical Nanotechnology</i> , 2016 , 12, 1876-89	4	8
311	Preparation of highly monodispersed porous-channeled poly(caprolactone) microspheres by a microfluidic system. <i>Materials Letters</i> , 2016 , 181, 92-98	3.3	15
310	Nanoparticle-mediated inhibition of survivin to overcome drug resistance in cancer therapy. <i>Journal of Controlled Release</i> , 2016 , 240, 454-464	11.7	42
309	Porous microcarrier-enabled three-dimensional culture of chondrocytes for cartilage engineering: A feasibility study. <i>Tissue Engineering and Regenerative Medicine</i> , 2016 , 13, 235-241	4.5	9
308	Isolation and culture of primary rat adipose derived stem cells using porous biopolymer microcarriers. <i>Tissue Engineering and Regenerative Medicine</i> , 2016 , 13, 242-250	4.5	4
307	Stimulation of Odontogenesis and Angiogenesis via Bioactive Nanocomposite Calcium Phosphate Cements Through Integrin and VEGF Signaling Pathways. <i>Journal of Biomedical Nanotechnology</i> , 2016 , 12, 1048-62	4	14
306	Biomaterials control of pluripotent stem cell fate for regenerative therapy. <i>Progress in Materials Science</i> , 2016 , 82, 234-293	42.2	32
305	Magnetic nanocomposite scaffolds combined with static magnetic field in the stimulation of osteoblastic differentiation and bone formation. <i>Biomaterials</i> , 2016 , 85, 88-98	15.6	159
304	Influence of ZrO2 oxide on the properties and crystallization of calcium fluoro-alumino-silicate glasses. <i>Ceramics International</i> , 2016 , 42, 5107-5112	5.1	7

303	Silk fibroin nanoparticles support in vitro sustained antibiotic release and osteogenesis on titanium surface. <i>Nanomedicine: Nanotechnology, Biology, and Medicine</i> , 2016 , 12, 1193-204	6	57
302	Solgel based materials for biomedical applications. <i>Progress in Materials Science</i> , 2016 , 77, 1-79	42.2	430
301	Signaling of extracellular matrices for tissue regeneration and therapeutics. <i>Tissue Engineering and Regenerative Medicine</i> , 2016 , 13, 1-12	4.5	30
300	Triple Hit with Drug Carriers: pH- and Temperature-Responsive Theranostics for Multimodal Chemo- and Photothermal Therapy and Diagnostic Applications. <i>ACS Applied Materials & Amp; Interfaces</i> , 2016 , 8, 8967-79	9.5	85
299	Gene delivery nanocarriers of bioactive glass with unique potential to load BMP2 plasmid DNA and to internalize into mesenchymal stem cells for osteogenesis and bone regeneration. <i>Nanoscale</i> , 2016 , 8, 8300-11	7.7	54
298	Hydroxyapatite mineral tubes developed for the loading and release of biological proteins. <i>Materials Letters</i> , 2016 , 167, 170-174	3.3	4
297	Effect of Aminated Mesoporous Bioactive Glass Nanoparticles on the Differentiation of Dental Pulp Stem Cells. <i>PLoS ONE</i> , 2016 , 11, e0150727	3.7	38
296	Delivery of dexamethasone from bioactive nanofiber matrices stimulates odontogenesis of human dental pulp cells through integrin/BMP/mTOR signaling pathways. <i>International Journal of Nanomedicine</i> , 2016 , 11, 2557-67	7.3	13
295	On-Site Surface Functionalization for Titanium Dental Implant with Nanotopography: Review and Outlook. <i>Journal of Nanomaterials</i> , 2016 , 2016, 1-8	3.2	3
294	Angiogenic Effects of Collagen/Mesoporous Nanoparticle Composite Scaffold Delivering VEGF. <i>BioMed Research International</i> , 2016 , 2016, 9676934	3	18
293	Polymer-Ceramic Bionanocomposites for Dental Application. <i>Journal of Nanomaterials</i> , 2016 , 2016, 1-8	3.2	11
292	Electrospun Nanofibers Applications in Dentistry. <i>Journal of Nanomaterials</i> , 2016 , 2016, 1-7	3.2	24
291	Dynamic Mechanical and Nanofibrous Topological Combinatory Cues Designed for Periodontal Ligament Engineering. <i>PLoS ONE</i> , 2016 , 11, e0149967	3.7	35
290	Impact of mechanical stretch on the cell behaviors of bone and surrounding tissues. <i>Journal of Tissue Engineering</i> , 2016 , 7, 2041731415618342	7.5	38
289	Nanotherapeutics of PTEN Inhibitor with Mesoporous Silica Nanocarrier Effective for Axonal Outgrowth of Adult Neurons. <i>ACS Applied Materials & Amp; Interfaces</i> , 2016 , 8, 18741-53	9.5	19
288	Bioactive glass-based nanocomposites for personalized dental tissue regeneration. <i>Dental Materials Journal</i> , 2016 , 35, 710-720	2.5	15
287	Enhanced cellular uptake and phototoxicity of Verteporfin-conjugated gold nanoparticles as theranostic nanocarriers for targeted photodynamic therapy and imaging of cancers. <i>Materials Science and Engineering C</i> , 2016 , 67, 611-622	8.3	30
286	Ionic and thermo-switchable polymer-masked mesoporous silica drug-nanocarrier: High drug loading capacity at 10°LC and fast drug release completion at 40°LC. <i>Colloids and Surfaces B:</i> Biointerfaces 2016 144 229-237	6	13

285	Complete reduction of p53 expression by RNA interference following heterozygous knockout in porcine fibroblasts. <i>In Vitro Cellular and Developmental Biology - Animal</i> , 2016 , 52, 736-41	2.6	
284	Development of long-term antimicrobial poly(methyl methacrylate) by incorporating mesoporous silica nanocarriers. <i>Dental Materials</i> , 2016 , 32, 1564-1574	5.7	43
283	Magnetic nanofiber scaffold-induced stimulation of odontogenesis and pro-angiogenesis of human dental pulp cells through Wnt/MAPK/NF- B pathways. <i>Dental Materials</i> , 2016 , 32, 1301-1311	5.7	19
282	Mineralization of fibers for bone regeneration 2016 , 443-476		2
281	Fluorescence-based retention assays reveals sustained release of vascular endothelial growth factor from bone grafts. <i>Journal of Biomedical Materials Research - Part A</i> , 2016 , 104, 283-90	5.4	7
280	Carbon-nanotube-interfaced glass fiber scaffold for regeneration of transected sciatic nerve. <i>Acta Biomaterialia</i> , 2015 , 13, 324-34	10.8	80
279	Osteoinductive fibrous scaffolds of biopolymer/mesoporous bioactive glass nanocarriers with excellent bioactivity and long-term delivery of osteogenic drug. <i>ACS Applied Materials & amp; Interfaces</i> , 2015 , 7, 1140-52	9.5	107
278	Novel solgel preparation of (P2O5)0.4(CaO)0.25(Na2O)X(TiO2)(0.35 \times) bioresorbable glasses (X = 0.05, 0.1, and 0.15). <i>Journal of Sol-Gel Science and Technology</i> , 2015 , 73, 434-442	2.3	16
277	Core-shell designed scaffolds for drug delivery and tissue engineering. <i>Acta Biomaterialia</i> , 2015 , 21, 2-1	9 10.8	120
276	Feasibility of silica-hybridized collagen hydrogels as three-dimensional cell matrices for hard tissue engineering. <i>Journal of Biomaterials Applications</i> , 2015 , 30, 338-50	2.9	14
275	Therapeutically relevant aspects in bone repair and regeneration. <i>Materials Today</i> , 2015 , 18, 573-589	21.8	78
274	Smart multifunctional drug delivery towards anticancer therapy harmonized in mesoporous nanoparticles. <i>Nanoscale</i> , 2015 , 7, 14191-216	7.7	129
273	Nanotopological-tailored calcium phosphate cements for the odontogenic stimulation of human dental pulp stem cells through integrin signaling. <i>RSC Advances</i> , 2015 , 5, 63363-63371	3.7	4
272	Influence of ZnO/MgO substitution on sintering, crystallisation, and bio-activity of alkali-free glass-ceramics. <i>Materials Science and Engineering C</i> , 2015 , 53, 252-61	8.3	18
271	Controlling oxygen release from hollow microparticles for prolonged cell survival under hypoxic environment. <i>Biomaterials</i> , 2015 , 53, 583-91	15.6	72
270	Multifunctional and stable bone mimic proteinaceous matrix for bone tissue engineering. <i>Biomaterials</i> , 2015 , 56, 46-57	15.6	30
269	Nanocomposite scaffolds incorporated with hydrophobically-functionalized mesoporous nanocarriers for the effective loading and long-term delivery of osteogenic drugs. <i>RSC Advances</i> , 2015 , 5, 26832-26842	3.7	7
268	Mesoporous silica-layered biopolymer hybrid nanofibrous scaffold: a novel nanobiomatrix platform for therapeutics delivery and bone regeneration. ACS Applied Materials & amp; Interfaces, 2015, 7, 8088-	98 ^{.5}	67

267	Nano-Bio-Chemical Braille for Cells: The Regulation of Stem Cell Responses using Bi-Functional Surfaces. <i>Advanced Functional Materials</i> , 2015 , 25, 193-205	15.6	29
266	Surface-enhanced Raman scattering (SERS)-active gold nanochains for multiplex detection and photodynamic therapy of cancer. <i>Acta Biomaterialia</i> , 2015 , 20, 155-164	10.8	28
265	Pheophorbide a-Conjugated pH-Sensitive Nanoparticle Vectors for Highly Efficient Photodynamic Therapy of Cancer. <i>International Journal of Polymeric Materials and Polymeric Biomaterials</i> , 2015 , 64, 73	3 ³ 744	7
264	Core-shell fibrous stem cell carriers incorporating osteogenic nanoparticulate cues for bone tissue engineering. <i>Acta Biomaterialia</i> , 2015 , 28, 183-192	10.8	23
263	Preparation of Self-Activated Fluorescence Mesoporous Silica Hollow Nanoellipsoids for Theranostics. <i>Langmuir</i> , 2015 , 31, 11344-52	4	23
262	Strontium- and calcium-containing, titanium-stabilised phosphate-based glasses with prolonged degradation for orthopaedic tissue engineering. <i>Journal of Biomaterials Applications</i> , 2015 , 30, 300-10	2.9	22
261	Non-mulberry silk fibroin grafted PCL nanofibrous scaffold: Promising ECM for bone tissue engineering. <i>European Polymer Journal</i> , 2015 , 71, 490-509	5.2	54
260	Fibronectin immobilization on to robotic-dispensed nanobioactive glass/polycaprolactone scaffolds for bone tissue engineering. <i>Biotechnology Letters</i> , 2015 , 37, 935-42	3	18
259	Effects of bioactive cements incorporating zinc-bioglass nanoparticles on odontogenic and angiogenic potential of human dental pulp cells. <i>Journal of Biomaterials Applications</i> , 2015 , 29, 954-64	2.9	33
258	Novel bioactive nanocomposite cement formulations with potential properties: incorporation of the nanoparticle form of mesoporous bioactive glass into calcium phosphate cements. <i>Journal of Materials Chemistry B</i> , 2015 , 3, 1321-1334	7.3	31
257	Odontogenic stimulation of human dental pulp cells with bioactive nanocomposite fiber. <i>Journal of Biomaterials Applications</i> , 2015 , 29, 854-66	2.9	33
256	Titanium phosphate glass microcarriers induce enhanced osteogenic cell proliferation and human mesenchymal stem cell protein expression. <i>Journal of Tissue Engineering</i> , 2015 , 6, 2041731415617741	7.5	19
255	Biointerfaces: Nano-Bio-Chemical Braille for Cells: The Regulation of Stem Cell Responses using Bi-Functional Surfaces (Adv. Funct. Mater. 2/2015). <i>Advanced Functional Materials</i> , 2015 , 25, 339-339	15.6	3
254	Tumor-Targeting Co-Delivery of Drug and Gene from Temperature-Triggered Micelles. <i>Macromolecular Bioscience</i> , 2015 , 15, 1198-204	5.5	15
253	Engineering of Self-Assembled Fibronectin Matrix Protein and Its Effects on Mesenchymal Stem Cells. <i>International Journal of Molecular Sciences</i> , 2015 , 16, 19645-56	6.3	7
252	Biological and mechanical properties of an experimental glass-ionomer cement modified by partial replacement of CaO with MgO or ZnO. <i>Journal of Applied Oral Science</i> , 2015 , 23, 369-75	3.3	13
251	Nanotechnology in dentistry: prevention, diagnosis, and therapy. <i>International Journal of Nanomedicine</i> , 2015 , 10, 6371-94	7.3	60
250	Novel therapeutic core-shell hydrogel scaffolds with sequential delivery of cobalt and bone morphogenetic protein-2 for synergistic bone regeneration. <i>Acta Biomaterialia</i> , 2015 , 23, 295-308	10.8	68

(2014-2015)

249	Electrical stimulation by enzymatic biofuel cell to promote proliferation, migration and differentiation of muscle precursor cells. <i>Biomaterials</i> , 2015 , 53, 358-69	15.6	17
248	Biocompatible Mesoporous Nanotubular Structured Surface to Control Cell Behaviors and Deliver Bioactive Molecules. <i>ACS Applied Materials & Deliver Structure Structur</i>	9.5	14
247	Generating iPSCs: translating cell reprogramming science into scalable and robust biomanufacturing strategies. <i>Cell Stem Cell</i> , 2015 , 16, 13-7	18	45
246	Enabling consistency in pluripotent stem cell-derived products for research and development and clinical applications through material standards. <i>Stem Cells Translational Medicine</i> , 2015 , 4, 217-23	6.9	29
245	In vitro co-culture strategies to prevascularization for bone regeneration: A brief update. <i>Tissue Engineering and Regenerative Medicine</i> , 2015 , 12, 69-79	4.5	12
244	Physically-strengthened collagen bioactive nanocomposite gels for bone: A feasibility study. <i>Tissue Engineering and Regenerative Medicine</i> , 2015 , 12, 90-97	4.5	15
243	Sol-gel synthesis and electrospraying of biodegradable (P2O5)55-(CaO)30-(Na2O)15 glass nanospheres as a transient contrast agent for ultrasound stem cell imaging. <i>ACS Nano</i> , 2015 , 9, 1868-18	3 77 6.7	50
242	Bioactive injectables based on calcium phosphates for hard tissues: A recent update. <i>Tissue Engineering and Regenerative Medicine</i> , 2015 , 12, 143-153	4.5	10
241	Therapeutic-designed electrospun bone scaffolds: mesoporous bioactive nanocarriers in hollow fiber composites to sequentially deliver dual growth factors. <i>Acta Biomaterialia</i> , 2015 , 16, 103-16	10.8	112
240	Novel magnetic nanocomposite injectables: calcium phosphate cements impregnated with ultrafine magnetic nanoparticles for bone regeneration. <i>RSC Advances</i> , 2015 , 5, 13411-13419	3.7	44
239	Magnetic Nanocomposite Scaffold-Induced Stimulation of Migration and Odontogenesis of Human Dental Pulp Cells through Integrin Signaling Pathways. <i>PLoS ONE</i> , 2015 , 10, e0138614	3.7	31
238	Multifunctional hybrid nanocarrier: magnetic CNTs ensheathed with mesoporous silica for drug delivery and imaging system. <i>ACS Applied Materials & Description of the State of</i>	9.5	87
237	Biphasic nanofibrous constructs with seeded cell layers for osteochondral repair. <i>Tissue Engineering - Part C: Methods</i> , 2014 , 20, 895-904	2.9	16
236	Enhanced mechanical properties and bone bioactivity of chitosan/silica membrane by functionalized-carbon nanotube incorporation. <i>Composites Science and Technology</i> , 2014 , 96, 31-37	8.6	37
235	Dynamic cell culture on porous biopolymer microcarriers in a spinner flask for bone tissue engineering: a feasibility study. <i>Biotechnology Letters</i> , 2014 , 36, 1539-48	3	17
234	Mesoporous bioactive nanocarriers in electrospun biopolymer fibrous scaffolds designed for sequential drug delivery. <i>RSC Advances</i> , 2014 , 4, 4444-4452	3.7	28
233	Differential stimulation of neurotrophin release by the biocompatible nano-material (carbon nanotube) in primary cultured neurons. <i>Journal of Biomaterials Applications</i> , 2014 , 28, 790-7	2.9	19
232	A novel therapeutic design of microporous-structured biopolymer scaffolds for drug loading and delivery. <i>Acta Biomaterialia</i> , 2014 , 10, 1238-50	10.8	39

231	Therapeutic bioactive microcarriers: co-delivery of growth factors and stem cells for bone tissue engineering. <i>Acta Biomaterialia</i> , 2014 , 10, 520-30	10.8	68
230	Nanocomposite bioactive polymeric scaffold promotes adhesion, proliferation and osteogenesis of rat bone marrow stromal cells. <i>Tissue Engineering and Regenerative Medicine</i> , 2014 , 11, 284-290	4.5	9
229	Recent update on implant surface tailoring to improve bone regenerative capacity. <i>Tissue Engineering and Regenerative Medicine</i> , 2014 , 11, 266-273	4.5	0
228	Bioactive and porous-structured nanocomposite microspheres effective for cell delivery: a feasibility study for bone tissue engineering. <i>RSC Advances</i> , 2014 , 4, 29062-29071	3.7	13
227	Hybrid magnetic scaffolds of gelatinBiloxane incorporated with magnetite nanoparticles effective for bone tissue engineering. <i>RSC Advances</i> , 2014 , 4, 40841-40851	3.7	37
226	Structure, biodegradation behavior and cytotoxicity of alkali-containing alkaline-earth phosphosilicate glasses. <i>Materials Science and Engineering C</i> , 2014 , 44, 159-65	8.3	25
225	Development of biocompatible apatite nanorod-based drug-delivery system with in situ fluorescence imaging capacity. <i>Journal of Materials Chemistry B</i> , 2014 , 2, 2039-2050	7.3	39
224	Preparation of in situ hardening composite microcarriers: calcium phosphate cement combined with alginate for bone regeneration. <i>Journal of Biomaterials Applications</i> , 2014 , 28, 1079-84	2.9	26
223	Advanced biomatrix designs for regenerative therapy of periodontal tissues. <i>Journal of Dental Research</i> , 2014 , 93, 1203-11	8.1	41
222	Mineralized polycaprolactone nanofibrous matrix for odontogenesis of human dental pulp cells. Journal of Biomaterials Applications, 2014 , 28, 1069-78	2.9	36
221	Biointerface control of electrospun fiber scaffolds for bone regeneration: engineered protein link to mineralized surface. <i>Acta Biomaterialia</i> , 2014 , 10, 2750-61	10.8	38
220	Carbon nanotube-collagen three-dimensional culture of mesenchymal stem cells promotes expression of neural phenotypes and secretion of neurotrophic factors. <i>Acta Biomaterialia</i> , 2014 , 10, 4425-36	10.8	66
219	Natural bone-like biomimetic surface modification of titanium. <i>Applied Surface Science</i> , 2014 , 301, 401-4	1 <i>6</i> 97	20
218	Magnetic scaffolds of polycaprolactone with functionalized magnetite nanoparticles: physicochemical, mechanical, and biological properties effective for bone regeneration. <i>RSC Advances</i> , 2014 , 4, 17325-17336	3.7	77
217	Evaluation of decellularization protocols for production of tubular small intestine submucosa scaffolds for use in oesophageal tissue engineering. <i>Acta Biomaterialia</i> , 2014 , 10, 5043-5054	10.8	119
216	Fabrication of nanofibrous macroporous scaffolds of poly(lactic acid) incorporating bioactive glass nanoparticles by camphene-assisted phase separation. <i>Materials Chemistry and Physics</i> , 2014 , 143, 1092	-4161	18
215	Therapeutic foam scaffolds incorporating biopolymer-shelled mesoporous nanospheres with growth factors. <i>Acta Biomaterialia</i> , 2014 , 10, 2612-21	10.8	25
214	Tailoring solubility and drug release from electrophoretic deposited chitosangelatin films on titanium. Surface and Coatings Technology, 2014, 242, 232-236	4.4	35

213	Development of a novel aluminum-free glass ionomer cement based on magnesium/strontium-silicate glasses. <i>Materials Science and Engineering C</i> , 2014 , 42, 665-71	8.3	20
212	Angiogenesis in bone regeneration: tailored calcium release in hybrid fibrous scaffolds. <i>ACS Applied Materials & Amp; Interfaces</i> , 2014 , 6, 7512-22	9.5	64
211	Tissue engineering in dentistry. <i>Journal of Dentistry</i> , 2014 , 42, 915-28	4.8	127
210	Engineering and application of collagen-binding fibroblast growth factor 2 for sustained release. Journal of Biomedical Materials Research - Part A, 2014, 102, 1-7	5.4	10
209	Hybrid scaffolds of gelatin-siloxane releasing stromal derived factor-1 effective for cell recruitment. <i>Journal of Biomedical Materials Research - Part A</i> , 2014 , 102, 1859-67	5.4	9
208	Strategies for osteochondral repair: Focus on scaffolds. <i>Journal of Tissue Engineering</i> , 2014 , 5, 20417314	1 7 4541	85 0
207	Utilizing PCL microcarriers for high-purity isolation of primary endothelial cells for tissue engineering. <i>Tissue Engineering - Part C: Methods</i> , 2014 , 20, 761-8	2.9	10
206	Novel Hybrid Nanorod Carriers of Fluorescent Hydroxyapatite Shelled with Mesoporous Silica Effective for Drug Delivery and Cell Imaging. <i>Journal of the American Ceramic Society</i> , 2014 , 97, 3071-30	76 ⁸	21
205	Nanostructured biointerfacing of metals with carbon nanotube/chitosan hybrids by electrodeposition for cell stimulation and therapeutics delivery. <i>ACS Applied Materials & amp; Interfaces</i> , 2014 , 6, 20214-24	9.5	30
204	Shell cross-linked polyethylenimine-modified micelles for temperature-triggered drug release and gene delivery. <i>RSC Advances</i> , 2014 , 4, 57702-57708	3.7	8
203	Gelatin-apatite bone mimetic co-precipitates incorporated within biopolymer matrix to improve mechanical and biological properties useful for hard tissue repair. <i>Journal of Biomaterials Applications</i> , 2014 , 28, 1213-25	2.9	10
202	Luminescent mesoporous nanoreservoirs for the effective loading and intracellular delivery of therapeutic drugs. <i>Acta Biomaterialia</i> , 2014 , 10, 1431-42	10.8	34
201	3D microenvironment of collagen hydrogel enhances the release of neurotrophic factors from human umbilical cord blood cells and stimulates the neurite outgrowth of human neural precursor cells. <i>Biochemical and Biophysical Research Communications</i> , 2014 , 447, 400-6	3.4	14
200	Utilizing core-shell fibrous collagen-alginate hydrogel cell delivery system for bone tissue engineering. <i>Tissue Engineering - Part A</i> , 2014 , 20, 103-14	3.9	73
199	Basic fibroblast growth factor-loaded, mineralized biopolymer-nanofiber scaffold improves adhesion and proliferation of rat mesenchymal stem cells. <i>Biotechnology Letters</i> , 2014 , 36, 383-90	3	13
198	Potential of magnetic nanofiber scaffolds with mechanical and biological properties applicable for bone regeneration. <i>PLoS ONE</i> , 2014 , 9, e91584	3.7	114
197	Robocasting nanocomposite scaffolds of poly(caprolactone)/hydroxyapatite incorporating modified carbon nanotubes for hard tissue reconstruction. <i>Journal of Biomedical Materials Research - Part A</i> , 2013 , 101, 1670-81	5.4	50
196	Cooperation between osteoblastic cells and endothelial cells enhances their phenotypic responses and improves osteoblast function. <i>Biotechnology Letters</i> , 2013 , 35, 1135-43	3	17

195	Inorganic nanobiomaterial drug carriers for medicine. <i>Tissue Engineering and Regenerative Medicine</i> , 2013 , 10, 296-309	4.5	26
194	Rat defect models for bone grafts and tissue engineered bone constructs. <i>Tissue Engineering and Regenerative Medicine</i> , 2013 , 10, 310-316	4.5	18
193	Biofunctionalized carbon nanotubes in neural regeneration: a mini-review. <i>Nanoscale</i> , 2013 , 5, 487-97	7.7	66
192	Naturally and synthetic smart composite biomaterials for tissue regeneration. <i>Advanced Drug Delivery Reviews</i> , 2013 , 65, 471-96	18.5	253
191	Collagen hydrogels incorporated with surface-aminated mesoporous nanobioactive glass: Improvement of physicochemical stability and mechanical properties is effective for hard tissue engineering. <i>Acta Biomaterialia</i> , 2013 , 9, 9508-21	10.8	123
190	Microcarriers designed for cell culture and tissue engineering of bone. <i>Tissue Engineering - Part B: Reviews</i> , 2013 , 19, 172-90	7.9	66
189	Development, characterisation and biocompatibility testing of a cobalt-containing titanium phosphate-based glass for engineering of vascularized hard tissues. <i>Materials Science and Engineering C</i> , 2013 , 33, 2104-12	8.3	22
188	Bone formation controlled by biologically relevant inorganic ions: role and controlled delivery from phosphate-based glasses. <i>Advanced Drug Delivery Reviews</i> , 2013 , 65, 405-20	18.5	177
187	Mesoporous silica tubular nanocarriers for the delivery of therapeutic molecules. <i>RSC Advances</i> , 2013 , 3, 8692	3.7	18
186	Efficacy of mesoporous silica nanoparticles in delivering BMP-2 plasmid DNA for in vitro osteogenic stimulation of mesenchymal stem cells. <i>Journal of Biomedical Materials Research - Part A</i> , 2013 , 101, 165	∮: 60	48
185	Bone tissue engineering of induced pluripotent stem cells cultured with macrochanneled polymer scaffold. <i>Journal of Biomedical Materials Research - Part A</i> , 2013 , 101, 1283-91	5.4	51
184	TiOEdoped phosphate glass microcarriers: a stable bioactive substrate for expansion of adherent mammalian cells. <i>Journal of Biomaterials Applications</i> , 2013 , 28, 3-11	2.9	17
183	Collagen gel combined with mesoporous nanoparticles loading nerve growth factor as a feasible therapeutic three-dimensional depot for neural tissue engineering. <i>RSC Advances</i> , 2013 , 3, 24202	3.7	24
182	Tethering bi-functional protein onto mineralized polymer scaffolds to regulate mesenchymal stem cell behaviors for bone regeneration. <i>Journal of Materials Chemistry B</i> , 2013 , 1, 2731-2741	7.3	21
181	Calcium phosphate cements loaded with basic fibroblast growth factor: delivery and in vitro cell response. <i>Journal of Biomedical Materials Research - Part A</i> , 2013 , 101, 923-31	5.4	25
180	Core-shell designed scaffolds of alginate/alpha-tricalcium phosphate for the loading and delivery of biological proteins. <i>Journal of Biomedical Materials Research - Part A</i> , 2013 , 101, 1103-12	5.4	25
179	Gene delivery techniques for adult stem cell-based regenerative therapy. <i>Nanomedicine</i> , 2013 , 8, 1875-9)\$.6	11
178	Mineralized poly(lactic acid) scaffolds loading vascular endothelial growth factor and the in vivo performance in rat subcutaneous model. <i>Journal of Biomedical Materials Research - Part A</i> , 2013 , 101, 1447-55	5.4	29

(2012-2013)

177	Silica-based mesoporous nanoparticles for controlled drug delivery. <i>Journal of Tissue Engineering</i> , 2013 , 4, 2041731413503357	7.5	205
176	A novel in vivo platform for studying alveolar bone regeneration in rat. <i>Journal of Tissue Engineering</i> , 2013 , 4, 2041731413517705	7.5	9
175	Robocasting chitosan/nanobioactive glass dual-pore structured scaffolds for bone engineering. <i>Materials Letters</i> , 2012 , 73, 119-122	3.3	47
174	A novel preparation of magnetic hydroxyapatite nanotubes. <i>Materials Letters</i> , 2012 , 75, 130-133	3.3	24
173	Size-dependent cellular toxicity of silver nanoparticles. <i>Journal of Biomedical Materials Research - Part A</i> , 2012 , 100, 1033-43	5.4	305
172	Fibroblast growth factor 2-functionalized collagen matrices for skeletal muscle tissue engineering. <i>Biotechnology Letters</i> , 2012 , 34, 771-8	3	19
171	Nanofibrous Scaffolding for Bone Tissue Engineering 2012 , 273-290		
170	Capacity of mesoporous bioactive glass nanoparticles to deliver therapeutic molecules. <i>Nanoscale</i> , 2012 , 4, 7475-88	7-7	110
169	Titanium phosphate glass microspheres for bone tissue engineering. Acta Biomaterialia, 2012, 8, 4181-	90 10.8	56
168	Polymeric additives to enhance the functional properties of calcium phosphate cements. <i>Journal of Tissue Engineering</i> , 2012 , 3, 2041731412439555	7.5	92
167	Construction of mesenchymal stem cell-containing collagen gel with a macrochanneled polycaprolactone scaffold and the flow perfusion culturing for bone tissue engineering. <i>BioResearch Open Access</i> , 2012 , 1, 124-36	2.4	34
166	Composite membranes of poly(lactic acid) with zinc-added bioactive glass as a guiding matrix for osteogenic differentiation of bone marrow mesenchymal stem cells. <i>Journal of Biomaterials Applications</i> , 2012 , 27, 413-22	2.9	16
165	A short review: Recent advances in electrospinning for bone tissue regeneration. <i>Journal of Tissue Engineering</i> , 2012 , 3, 2041731412443530	7.5	117
164	Self assembly of positively charged carbon nanotubes with oppositely charged metallic surface. <i>Applied Surface Science</i> , 2012 , 258, 6455-6459	6.7	7
163	Electrospinning technology in tissue regeneration. Methods in Molecular Biology, 2012, 811, 127-40	1.4	18
162	Odontogenic responses of human dental pulp cells to collagen/nanobioactive glass nanocomposites. <i>Dental Materials</i> , 2012 , 28, 1271-9	5.7	47
161	Providing osteogenesis conditions to mesenchymal stem cells using bioactive nanocomposite bone scaffolds. <i>Materials Science and Engineering C</i> , 2012 , 32, 2545-2551	8.3	14
160	Chitosanfianobioactive glass electrophoretic coatings with bone regenerative and drug delivering potential. <i>Journal of Materials Chemistry</i> , 2012 , 22, 24945		68

159	Biointerface: protein enhanced stem cells binding to implant surface. <i>Journal of Materials Science: Materials in Medicine</i> , 2012 , 23, 2203-15	4.5	17
158	Investigating the role of FGF18 in the cultivation and osteogenic differentiation of mesenchymal stem cells. <i>PLoS ONE</i> , 2012 , 7, e43982	3.7	20
157	Biocompatible magnetite nanoparticles with varying silica-coating layer for use in biomedicine: physicochemical and magnetic properties, and cellular compatibility. <i>Journal of Biomedical Materials Research - Part A</i> , 2012 , 100, 1734-42	5.4	81
156	Macrochanneled bioactive ceramic scaffolds in combination with collagen hydrogel: a new tool for bone tissue engineering. <i>Journal of Biomedical Materials Research - Part A</i> , 2012 , 100, 2431-40	5.4	5
155	Novel porous scaffolds of poly(lactic acid) produced by phase-separation using room temperature ionic liquid and the assessments of biocompatibility. <i>Journal of Materials Science: Materials in Medicine</i> , 2012 , 23, 1271-9	4.5	27
154	Performance of evacuated calcium phosphate microcarriers loaded with mesenchymal stem cells within a rat calvarium defect. <i>Journal of Materials Science: Materials in Medicine</i> , 2012 , 23, 1739-48	4.5	12
153	Adhesive proteins linked with focal adhesion kinase regulate neurite outgrowth of PC12 cells. <i>Acta Biomaterialia</i> , 2012 , 8, 165-72	10.8	9
152	Effects of phosphate glass fiber-collagen scaffolds on functional recovery of completely transected rat spinal cords. <i>Acta Biomaterialia</i> , 2012 , 8, 1802-12	10.8	33
151	Collagen three-dimensional hydrogel matrix carrying basic fibroblast growth factor for the cultivation of mesenchymal stem cells and osteogenic differentiation. <i>Tissue Engineering - Part A</i> , 2012 , 18, 1087-100	3.9	56
150	Neurite outgrowth of dorsal root ganglia neurons is enhanced on aligned nanofibrous biopolymer scaffold with carbon nanotube coating. <i>Neuroscience Letters</i> , 2011 , 501, 10-4	3.3	108
149	Effect of carbon nanotube coating of aligned nanofibrous polymer scaffolds on the neurite outgrowth of PC-12 cells. <i>Cell Biology International</i> , 2011 , 35, 741-5	4.5	30
148	Bioprocess forces and their impact on cell behavior: implications for bone regeneration therapy. Journal of Tissue Engineering, 2011 , 2011, 620247	7.5	45
147	Self-Hardening Microspheres of Calcium Phosphate Cement with Collagen for Drug Delivery and Tissue Engineering in Bone Repair. <i>Journal of the American Ceramic Society</i> , 2011 , 94, 351-354	3.8	17
146	Reply to Comment on Self-Hardening Microspheres of Calcium Phosphate Cement with Collagen for Drug Delivery and Tissue Engineering in Bone Repair Journal of the American Ceramic Society, 2011 , 94, 3150-3150	3.8	
145	Improvement of Bioactive Glass Nanofiber by a Capillary-Driven Infiltration Coating with Degradable Polymers. <i>Journal of the American Ceramic Society</i> , 2011 , 94, 2812-2815	3.8	8
144	Preparation of hydroxyapatiteBarbon nanotube composite nanopowders. <i>Materials Letters</i> , 2011 , 65, 208-211	3.3	27
143	Electrosprayed tricalcium phosphate spherical microcups and antibiotic drug delivery. <i>Materials Letters</i> , 2011 , 65, 2043-2046	3.3	8
142	Using hydrophilic ionic liquids as a facile route to prepare porous-structured biopolymer scaffolds. <i>Materials Letters</i> , 2011 , 65, 2114-2117	3.3	15

(2010-2011)

141	Improvement of surface bioactivity of poly(lactic acid) biopolymer by sandblasting with hydroxyapatite bioceramic. <i>Materials Letters</i> , 2011 , 65, 2951-2955	3.3	13
140	Functionalization of poly(caprolactone) scaffolds by the surface mineralization for use in bone regeneration. <i>Materials Letters</i> , 2011 , 65, 3559-3562	3.3	11
139	Silica nanoparticles with enlarged nanopore size for the loading and release of biological proteins. <i>Materials Letters</i> , 2011 , 65, 3570-3573	3.3	19
138	Nanofibrous-structured biopolymer scaffolds obtained by a phase separation with camphene and initial cellular events. <i>Journal of Materials Chemistry</i> , 2011 , 21, 4523		21
137	Alginate combined calcium phosphate cements: mechanical properties and in vitro rat bone marrow stromal cell responses. <i>Journal of Materials Science: Materials in Medicine</i> , 2011 , 22, 1257-68	4.5	24
136	Engineering of a multi-functional extracellular matrix protein for immobilization to bone mineral hydroxyapatite. <i>Biotechnology Letters</i> , 2011 , 33, 199-204	3	8
135	Direct deposited porous scaffolds of calcium phosphate cement with alginate for drug delivery and bone tissue engineering. <i>Acta Biomaterialia</i> , 2011 , 7, 3178-86	10.8	124
134	Biomedical nanocomposites of poly(lactic acid) and calcium phosphate hybridized with modified carbon nanotubes for hard tissue implants. <i>Journal of Biomedical Materials Research - Part B Applied Biomaterials</i> , 2011 , 98, 246-54	3.5	39
133	Effects on growth and osteogenic differentiation of mesenchymal stem cells by the zinc-added sol-gel bioactive glass granules. <i>Journal of Tissue Engineering</i> , 2011 , 2010, 475260	7.5	56
132	Carbon nanotubes in nanocomposites and hybrids with hydroxyapatite for bone replacements. Journal of Tissue Engineering, 2011 , 2011, 674287	7.5	30
131	Functional composite nanofibers of poly(lactide-co-caprolactone) containing gelatin-apatite bone mimetic precipitate for bone regeneration. <i>Acta Biomaterialia</i> , 2011 , 7, 1609-17	10.8	70
130	Poly(lactic acid) porous scaffold with calcium phosphate mineralized surface and bone marrow mesenchymal stem cell growth and differentiation. <i>Materials Science and Engineering C</i> , 2011 , 31, 612-6	18 ³	16
129	Collagen gel three-dimensional matrices combined with adhesive proteins stimulate neuronal differentiation of mesenchymal stem cells. <i>Journal of the Royal Society Interface</i> , 2011 , 8, 998-1010	4.1	41
128	Odontogenic differentiation of human dental pulp stem cells stimulated by the calcium phosphate porous granules. <i>Journal of Tissue Engineering</i> , 2011 , 2011, 812547	7.5	45
127	Highly Homogeneous Carbon Nanotube-Polycaprolactone Composites with Various and Controllable Concentrations of Ionically-Modified-MWCNTs. <i>Bulletin of the Korean Chemical Society</i> , 2011 , 32, 157-161	1.2	28
126	Positive Charge-doping on Carbon Nanotube Walls and Anion-directed Tunable Dispersion of the Derivatives. <i>Bulletin of the Korean Chemical Society</i> , 2011 , 32, 1635-1639	1.2	8
125	Performance of novel nanofibrous biopolymer membrane for guided bone regeneration within rat mandibular defect. <i>In Vivo</i> , 2011 , 25, 589-95	2.3	9
124	Development of robotic dispensed bioactive scaffolds and human adipose-derived stem cell culturing for bone tissue engineering. <i>Tissue Engineering - Part C: Methods</i> , 2010 , 16, 561-71	2.9	23

123	Bone cell responses of titanium blasted with bioactive glass particles. <i>Journal of Biomaterials Applications</i> , 2010 , 25, 99-117	2.9	13
122	Novel scaffolds of collagen with bioactive nanofiller for the osteogenic stimulation of bone marrow stromal cells. <i>Journal of Biomaterials Applications</i> , 2010 , 24, 733-50	2.9	17
121	Fibroblast growth factors: biology, function, and application for tissue regeneration. <i>Journal of Tissue Engineering</i> , 2010 , 2010, 218142	7.5	326
120	Effect of calcium phosphate cements on growth and odontoblastic differentiation in human dental pulp cells. <i>Journal of Endodontics</i> , 2010 , 36, 1537-42	4.7	50
119	Effects of fibroblast growth factor-2 on the expression and regulation of chemokines in human dental pulp cells. <i>Journal of Endodontics</i> , 2010 , 36, 1824-30	4.7	61
118	Clinical and experimental advances in regeneration of spinal cord injury. <i>Journal of Tissue Engineering</i> , 2010 , 2010, 650857	7.5	35
117	Evacuated calcium phosphate spherical microcarriers for bone regeneration. <i>Tissue Engineering - Part A</i> , 2010 , 16, 1681-91	3.9	14
116	A bioactive coating of a silica xerogel/chitosan hybrid on titanium by a room temperature sol-gel process. <i>Acta Biomaterialia</i> , 2010 , 6, 302-7	10.8	79
115	Silica xerogel-chitosan nano-hybrids for use as drug eluting bone replacement. <i>Journal of Materials Science: Materials in Medicine</i> , 2010 , 21, 207-14	4.5	45
114	FGF2-adsorbed macroporous hydroxyapatite bone granules stimulate in vitro osteoblastic gene expression and differentiation. <i>Journal of Materials Science: Materials in Medicine</i> , 2010 , 21, 1335-42	4.5	17
113	Osteoclastic cell behaviors affected by the Ericalcium phosphate based bone cements. <i>Journal of Materials Science: Materials in Medicine</i> , 2010 , 21, 3019-27	4.5	25
112	Construction and expression of a recombinant fibronectinIII10 protein for integrin-mediated cell adhesion. <i>Biotechnology Letters</i> , 2010 , 32, 29-33	3	10
111	Composite nanofiber of bioactive glass nanofiller incorporated poly(lactic acid) for bone regeneration. <i>Materials Letters</i> , 2010 , 64, 802-805	3.3	64
110	Production of a biomimetic apatite nanotube mesh via biotemplating a polymer nanofiber mesh. <i>Materials Letters</i> , 2010 , 64, 2655-2658	3.3	6
109	Porous biomedical composite microspheres developed for cell delivering scaffold in bone regeneration. <i>Materials Letters</i> , 2010 , 64, 2261-2264	3.3	18
108	The effect of mesenchymal stem cell transplantation on the recovery of bladder and hindlimb function after spinal cord contusion in rats. <i>BMC Neuroscience</i> , 2010 , 11, 119	3.2	45
107	Bone regeneration by bioactive hybrid membrane containing FGF2 within rat calvarium. <i>Journal of Biomedical Materials Research - Part A</i> , 2010 , 94, 1187-94	5.4	29
106	A Fibronectin Peptide-Coupled Biopolymer Nanofibrous Matrix to Speed Up Initial Cellular Events. <i>Advanced Engineering Materials</i> , 2010 , 12, B94-B100	3.5	12

(2008-2009)

105	Surface-mineralized polymeric nanofiber for the population and osteogenic stimulation of rat bone-marrow stromal cells. <i>Materials Chemistry and Physics</i> , 2009 , 113, 873-877	4.4	30
104	Bioactive and Degradable Composite Microparticulates for the Tissue Cell Population and Osteogenic Development. <i>Advanced Engineering Materials</i> , 2009 , 11, B162-B168	3.5	4
103	Apatite-mineralized polycaprolactone nanofibrous web as a bone tissue regeneration substrate. Journal of Biomedical Materials Research - Part A, 2009, 88, 747-54	5.4	81
102	In vitro/in vivo biocompatibility and mechanical properties of bioactive glass nanofiber and poly(epsilon-caprolactone) composite materials. <i>Journal of Biomedical Materials Research - Part B Applied Biomaterials</i> , 2009 , 91, 213-20	3.5	133
101	Tissue engineering polymeric microcarriers with macroporous morphology and bone-bioactive surface. <i>Macromolecular Bioscience</i> , 2009 , 9, 639-45	5.5	55
100	Preparation of porous bioactive ceramic microspheres and in vitro osteoblastic culturing for tissue engineering application. <i>Acta Biomaterialia</i> , 2009 , 5, 1725-31	10.8	33
99	Membrane of hybrid chitosan-silica xerogel for guided bone regeneration. <i>Biomaterials</i> , 2009 , 30, 743-5	5 0 15.6	212
98	Nanofibrous membrane of collagen-polycaprolactone for cell growth and tissue regeneration. Journal of Materials Science: Materials in Medicine, 2009 , 20, 1927-35	4.5	54
97	Robotic dispensing of composite scaffolds and in vitro responses of bone marrow stromal cells. Journal of Materials Science: Materials in Medicine, 2009, 20, 1955-62	4.5	23
96	Electrospun materials as potential platforms for bone tissue engineering. <i>Advanced Drug Delivery Reviews</i> , 2009 , 61, 1065-83	18.5	388
95	Bone formation on the apatite-coated zirconia porous scaffolds within a rabbit calvarial defect. <i>Journal of Biomaterials Applications</i> , 2008 , 22, 485-504	2.9	41
94	Effect of C incorporation on relaxation of SiGe/Si. Applied Physics Letters, 2008, 93, 221902	3.4	5
93	Effect of hydroxyapatite-coated nanofibrous membrane on the responses of human periodontal ligament fibroblast. <i>Journal of the Ceramic Society of Japan</i> , 2008 , 116, 31-35	1	11
92	Biomimetic approach to dental implants. Current Pharmaceutical Design, 2008, 14, 2201-11	3.3	51
91	Nanofibrous glass tailored with apatite-fibronectin interface for bone cell stimulation. <i>Journal of Nanoscience and Nanotechnology</i> , 2008 , 8, 3013-9	1.3	12
90	Production of electrospun gelatin nanofiber by water-based co-solvent approach. <i>Journal of Materials Science: Materials in Medicine</i> , 2008 , 19, 95-102	4.5	141
89	Improvement in crystallinity of apatite coating on titanium with the insertion of CaF2 buffer layer. Journal of Materials Science: Materials in Medicine, 2008, 19, 1905-11	4.5	1
88	Bioactive microspheres produced from gelatin-siloxane hybrids for bone regeneration. <i>Journal of Materials Science: Materials in Medicine</i> , 2008 , 19, 2287-92	4.5	32

87	Electrospun fibrous web of collagen-apatite precipitated nanocomposite for bone regeneration. Journal of Materials Science: Materials in Medicine, 2008 , 19, 2925-32	4.5	78
86	Preparation of hydroxyapatite spheres with an internal cavity as a scaffold for hard tissue regeneration. <i>Journal of Materials Science: Materials in Medicine</i> , 2008 , 19, 3029-34	4.5	30
85	Bioactive sol-gel glass added ionomer cement for the regeneration of tooth structure. <i>Journal of Materials Science: Materials in Medicine</i> , 2008 , 19, 3287-94	4.5	28
84	Bioactive and degradable hybridized nanofibers of gelatin-siloxane for bone regeneration. <i>Journal of Biomedical Materials Research - Part A</i> , 2008 , 84, 875-84	5.4	49
83	Bioactivity and osteoblast responses of novel biomedical nanocomposites of bioactive glass nanofiber filled poly(lactic acid). <i>Journal of Biomedical Materials Research - Part A</i> , 2008 , 85, 651-63	5.4	116
82	Nanofibrous matrices of poly(lactic acid) and gelatin polymeric blends for the improvement of cellular responses. <i>Journal of Biomedical Materials Research - Part A</i> , 2008 , 87, 25-32	5.4	118
81	Phase conversion of tricalcium phosphate into Ca-deficient apatite during sintering of hydroxyapatite-tricalcium phosphate biphasic ceramics. <i>Journal of Biomedical Materials Research - Part B Applied Biomaterials</i> , 2008 , 84, 334-9	3.5	21
80	Bioactivity improvement of poly(epsilon-caprolactone) membrane with the addition of nanofibrous bioactive glass. <i>Acta Biomaterialia</i> , 2008 , 4, 622-9	10.8	86
79	Microspheres of collagen-apatite nanocomposites with osteogenic potential for tissue engineering. <i>Tissue Engineering</i> , 2007 , 13, 965-73		62
78	Biomedical nanocomposites of hydroxyapatite/polycaprolactone obtained by surfactant mediation. Journal of Biomedical Materials Research - Part A, 2007, 83, 169-77	5.4	83
77	Collagen-apatite nanocomposite membranes for guided bone regeneration. <i>Journal of Biomedical Materials Research - Part B Applied Biomaterials</i> , 2007 , 83, 248-57	3.5	66
76	Nano-Sized Hydroxyapatite Coatings on Ti Substrate with TiO2 Buffer Layer by E-beam Deposition. Journal of the American Ceramic Society, 2007 , 90, 50-56	3.8	25
75	Production of Aluminum Dirconium Oxide Hybridized Nanopowder and Its Nanocomposite. <i>Journal of the American Ceramic Society</i> , 2007 , 90, 298-302	3.8	20
74	Porous Hydroxyapatite Scaffolds Coated With Bioactive Apatite Wollastonite Glass Deramics. <i>Journal of the American Ceramic Society</i> , 2007 , 90, 2703-2708	3.8	48
73	Highly porous hydroxyapatite bioceramics with interconnected pore channels using camphene-based freeze casting. <i>Materials Letters</i> , 2007 , 61, 2270-2273	3.3	111
72	Recombinant expression of mouse osteocalcin protein in Escherichia coli. <i>Biotechnology Letters</i> , 2007 , 29, 1631-5	3	9
71	Bioactive glass nanofiber-collagen nanocomposite as a novel bone regeneration matrix. <i>Journal of Biomedical Materials Research - Part A</i> , 2006 , 79, 698-705	5.4	107
70	Electrospinning biomedical nanocomposite fibers of hydroxyapatite/poly(lactic acid) for bone regeneration. <i>Journal of Biomedical Materials Research - Part A</i> , 2006 , 79, 643-9	5.4	291

(2005-2006)

69	Nanofiber generation of hydroxyapatite and fluor-hydroxyapatite bioceramics. <i>Journal of Biomedical Materials Research - Part B Applied Biomaterials</i> , 2006 , 77, 323-8	3.5	58
68	Production and Potential of Bioactive Glass Nanofibers as a Next-Generation Biomaterial. <i>Advanced Functional Materials</i> , 2006 , 16, 1529-1535	15.6	221
67	Nanofiber of ultra-structured aluminum and zirconium oxide hybrid. <i>Journal of Nanoscience and Nanotechnology</i> , 2006 , 6, 505-9	1.3	4
66	Hydroxyapatite-TiO2 hybrid coating on Ti implants. <i>Journal of Biomaterials Applications</i> , 2006 , 20, 195-2	2 0.8 9	72
65	Improvement in Biocompatibility of Fluoridated Apatite with Addition of Resorbable Glass. <i>Journal of the American Ceramic Society</i> , 2006 , 89, 1748-1751	3.8	9
64	Reinforcement of a Reticulated Porous Ceramic by a Novel Infiltration Technique. <i>Journal of the American Ceramic Society</i> , 2006 , 89, 060427083300080-???	3.8	7
63	Processing and Performance of Hydroxyapatite/Fluorapatite Double Layer Coating on Zirconia by the Powder Slurry Method. <i>Journal of the American Ceramic Society</i> , 2006 , 89, 2466-2472	3.8	16
62	Production of Hydroxyapatite/Bioactive Glass Biomedical Composites by the Hot-Pressing Technique. <i>Journal of the American Ceramic Society</i> , 2006 , 89, 3593-3596	3.8	10
61	Effect of Polystyrene Addition on Freeze Casting of Ceramic/Camphene Slurry for Ultra-High Porosity Ceramics with Aligned Pore Channels. <i>Journal of the American Ceramic Society</i> , 2006 , 89, 3646-	3 6 53	97
60	Initial responses of human osteoblasts to sol-gel modified titanium with hydroxyapatite and titania composition. <i>Acta Biomaterialia</i> , 2006 , 2, 547-56	10.8	61
59	Hydroxyapatite (HA) bone scaffolds with controlled macrochannel pores. <i>Journal of Materials Science: Materials in Medicine</i> , 2006 , 17, 517-21	4.5	30
58	Fluoridated apatite coatings on titanium obtained by electron-beam deposition. <i>Biomaterials</i> , 2005 , 26, 3843-51	15.6	80
57	Improvement in biocompatibility of ZrO2-Al2O3 nano-composite by addition of HA. <i>Biomaterials</i> , 2005 , 26, 509-17	15.6	116
56	Sol G el Preparation and Properties of Fluoride-Substituted Hydroxyapatite Powders. <i>Journal of the American Ceramic Society</i> , 2005 , 87, 1939-1944	3.8	32
55	Mechanical and Biological Performance of Calcium Phosphate Coatings on Porous Bone Scaffold. Journal of the American Ceramic Society, 2005 , 87, 2135-2138	3.8	5
54	Biocompatibility of Fluor-Hydroxyapatite Bioceramics. <i>Journal of the American Ceramic Society</i> , 2005 , 88, 1309-1311	3.8	16
53	Co-Firing of Spatially Varying Dielectric CaMgBilicate and BiBaNdIIitanate Composite. <i>Journal of the American Ceramic Society</i> , 2005 , 88, 2690-2695	3.8	3
52	Hydroxyapatite and gelatin composite foams processed via novel freeze-drying and crosslinking for use as temporary hard tissue scaffolds. <i>Journal of Biomedical Materials Research - Part A</i> , 2005 , 72, 136-	4§·4	151

51	Sol-gel-modified titanium with hydroxyapatite thin films and effect on osteoblast-like cell responses. <i>Journal of Biomedical Materials Research - Part A</i> , 2005 , 74, 294-305	5.4	45
50	Mechanical performance and osteoblast-like cell responses of fluorine-substituted hydroxyapatite and zirconia dense composite. <i>Journal of Biomedical Materials Research - Part A</i> , 2005 , 72, 258-68	5.4	24
49	Biocompatibility of titanium implants modified by microarc oxidation and hydroxyapatite coating. Journal of Biomedical Materials Research - Part A, 2005 , 73, 48-54	5.4	111
48	Fibrillar assembly and stability of collagen coating on titanium for improved osteoblast responses. Journal of Biomedical Materials Research - Part A, 2005 , 75, 629-38	5.4	56
47	On the feasibility of phosphate glass and hydroxyapatite engineered coating on titanium. <i>Journal of Biomedical Materials Research - Part A</i> , 2005 , 75, 656-67	5.4	15
46	Hydroxyapatite and titania sol-gel composite coatings on titanium for hard tissue implants; mechanical and in vitro biological performance. <i>Journal of Biomedical Materials Research Part B</i> , 2005 , 72, 1-8		76
45	Degradation and drug release of phosphate glass/polycaprolactone biological composites for hard-tissue regeneration. <i>Journal of Biomedical Materials Research - Part B Applied Biomaterials</i> , 2005 , 75, 34-41	3.5	56
44	Porous scaffolds of gelatin-hydroxyapatite nanocomposites obtained by biomimetic approach: characterization and antibiotic drug release. <i>Journal of Biomedical Materials Research - Part B Applied Biomaterials</i> , 2005 , 74, 686-98	3.5	123
43	Fluoride coatings on orthodontic wire for controlled release of fluorine ion. <i>Journal of Biomedical Materials Research - Part B Applied Biomaterials</i> , 2005 , 75, 200-4	3.5	2
42	Nanofiber Generation of Gelatin Hydroxyapatite Biomimetics for Guided Tissue Regeneration. <i>Advanced Functional Materials</i> , 2005 , 15, 1988-1994	15.6	305
42 41		15.6 15.6	305 68
	Advanced Functional Materials, 2005, 15, 1988-1994		
41	Advanced Functional Materials, 2005, 15, 1988-1994 Stability and cellular responses to fluorapatite-collagen composites. Biomaterials, 2005, 26, 2957-63 Effect of fluoridation of hydroxyapatite in hydroxyapatite-polycaprolactone composites on	15.6	68
41 40	Advanced Functional Materials, 2005, 15, 1988-1994 Stability and cellular responses to fluorapatite-collagen composites. Biomaterials, 2005, 26, 2957-63 Effect of fluoridation of hydroxyapatite in hydroxyapatite-polycaprolactone composites on osteoblast activity. Biomaterials, 2005, 26, 4395-404 Stimulation of osteoblast responses to biomimetic nanocomposites of gelatin-hydroxyapatite for	15.6 15.6	68
41 40 39	Advanced Functional Materials, 2005, 15, 1988-1994 Stability and cellular responses to fluorapatite-collagen composites. Biomaterials, 2005, 26, 2957-63 Effect of fluoridation of hydroxyapatite in hydroxyapatite-polycaprolactone composites on osteoblast activity. Biomaterials, 2005, 26, 4395-404 Stimulation of osteoblast responses to biomimetic nanocomposites of gelatin-hydroxyapatite for tissue engineering scaffolds. Biomaterials, 2005, 26, 5221-30 Microsphere of apatite-gelatin nanocomposite as bone regenerative filler. Journal of Materials	15.6 15.6	68 93 381
41 40 39 38	Advanced Functional Materials, 2005, 15, 1988-1994 Stability and cellular responses to fluorapatite-collagen composites. Biomaterials, 2005, 26, 2957-63 Effect of fluoridation of hydroxyapatite in hydroxyapatite-polycaprolactone composites on osteoblast activity. Biomaterials, 2005, 26, 4395-404 Stimulation of osteoblast responses to biomimetic nanocomposites of gelatin-hydroxyapatite for tissue engineering scaffolds. Biomaterials, 2005, 26, 5221-30 Microsphere of apatite-gelatin nanocomposite as bone regenerative filler. Journal of Materials Science: Materials in Medicine, 2005, 16, 1105-9 Hydroxyapatite porous scaffold engineered with biological polymer hybrid coating for antibiotic	15.6 15.6 15.6	68 93 381 32
41 40 39 38 37	Stability and cellular responses to fluorapatite-collagen composites. <i>Biomaterials</i> , 2005 , 26, 2957-63 Effect of fluoridation of hydroxyapatite in hydroxyapatite-polycaprolactone composites on osteoblast activity. <i>Biomaterials</i> , 2005 , 26, 4395-404 Stimulation of osteoblast responses to biomimetic nanocomposites of gelatin-hydroxyapatite for tissue engineering scaffolds. <i>Biomaterials</i> , 2005 , 26, 5221-30 Microsphere of apatite-gelatin nanocomposite as bone regenerative filler. <i>Journal of Materials Science: Materials in Medicine</i> , 2005 , 16, 1105-9 Hydroxyapatite porous scaffold engineered with biological polymer hybrid coating for antibiotic Vancomycin release. <i>Journal of Materials Science: Materials in Medicine</i> , 2005 , 16, 189-95 Recombinant osteopontin fragment coating on hydroxyapatite for enhanced osteoblast-like cell	15.6 15.6 15.6 4.5	68 93 381 32 159

33	Effect of Flaw State on the Strength of Brittle Coatings on Soft Substrates. <i>Journal of the American Ceramic Society</i> , 2004 , 84, 2377-2384	3.8	55
32	Mechanical Properties of Three-Layered Monolithic Silicon Nitride l librous Silicon Nitride/Boron Nitride Monolith. <i>Journal of the American Ceramic Society</i> , 2004 , 85, 2840-2842	3.8	5
31	Effect of Oxidation on Mechanical Properties of Fibrous Monolith Si3N4/BN at Elevated Temperatures in Air. <i>Journal of the American Ceramic Society</i> , 2004 , 85, 3123-3125	3.8	5
30	Improvement of Hydroxyapatite Sol © el Coating on Titanium with Ammonium Hydroxide Addition. <i>Journal of the American Ceramic Society</i> , 2004 , 88, 154-159	3.8	25
29	Strontium substituted calcium phosphate biphasic ceramics obtained by a powder precipitation method. <i>Journal of Materials Science: Materials in Medicine</i> , 2004 , 15, 1129-34	4.5	84
28	Improved biological performance of Ti implants due to surface modification by micro-arc oxidation. <i>Biomaterials</i> , 2004 , 25, 2867-75	15.6	550
27	Calcium phosphates and glass composite coatings on zirconia for enhanced biocompatibility. <i>Biomaterials</i> , 2004 , 25, 4203-13	15.6	74
26	Dissolution control and cellular responses of calcium phosphate coatings on zirconia porous scaffold. <i>Journal of Biomedical Materials Research Part B</i> , 2004 , 68, 522-30		43
25	Effect of biphasic calcium phosphates on drug release and biological and mechanical properties of poly(epsilon-caprolactone) composite membranes. <i>Journal of Biomedical Materials Research Part B</i> , 2004 , 70, 467-79		51
24	Hard-tissue-engineered zirconia porous scaffolds with hydroxyapatite sol-gel and slurry coatings. Journal of Biomedical Materials Research Part B, 2004 , 70, 270-7		32
23	Development of hydroxyapatite bone scaffold for controlled drug release via poly(epsilon-caprolactone) and hydroxyapatite hybrid coatings. <i>Journal of Biomedical Materials Research Part B</i> , 2004 , 70, 240-9		95
22	Hydroxyapatite and fluor-hydroxyapatite layered film on titanium processed by a sol-gel route for hard-tissue implants. <i>Journal of Biomedical Materials Research Part B</i> , 2004 , 71, 66-76		45
21	Hydroxyapatite/poly(epsilon-caprolactone) composite coatings on hydroxyapatite porous bone scaffold for drug delivery. <i>Biomaterials</i> , 2004 , 25, 1279-87	15.6	435
20	Hydroxyapatite coating on titanium substrate with titania buffer layer processed by sol-gel method. <i>Biomaterials</i> , 2004 , 25, 2533-8	15.6	309
19	Sol-gel derived fluor-hydroxyapatite biocoatings on zirconia substrate. <i>Biomaterials</i> , 2004 , 25, 2919-26	15.6	113
18	Fluor-hydroxyapatite sol-gel coating on titanium substrate for hard tissue implants. <i>Biomaterials</i> , 2004 , 25, 3351-8	15.6	183
17	Fabrication and compressive strength of macrochannelled tetragonal zirconia polycrystals with calcium phosphate coating layer. <i>Journal of Materials Research</i> , 2003 , 18, 2009-2012	2.5	7
16	Enhanced performance of fluorine substituted hydroxyapatite composites for hard tissue engineering. <i>Journal of Materials Science: Materials in Medicine</i> , 2003 , 14, 899-904	4.5	44

15	Porous ZrO2 bone scaffold coated with hydroxyapatite with fluorapatite intermediate layer. <i>Biomaterials</i> , 2003 , 24, 3277-84	15.6	164
14	Pressureless Sintering and Mechanical and Biological Properties of Fluor-hydroxyapatite Composites with Zirconia. <i>Journal of the American Ceramic Society</i> , 2003 , 86, 2019-2026	3.8	62
13	Macrochanneled Tetragonal Zirconia Polycrystals Coated by a Calcium Phosphate Layer. <i>Journal of the American Ceramic Society</i> , 2003 , 86, 2027-2030	3.8	9
12	Biological Activities of HA-coated Zirconia. <i>The Journal of the Korean Academy of Periodontology</i> , 2003 , 33, 1		
11	Effect of CaF2 on densification and properties of hydroxyapatite-zirconia composites for biomedical applications. <i>Biomaterials</i> , 2002 , 23, 4113-21	15.6	96
10	Reaction Sintering and Mechanical Properties of Hydroxyapatite Zirconia Composites with Calcium Fluoride Additions. <i>Journal of the American Ceramic Society</i> , 2002 , 85, 1634-1636	3.8	35
9	Fabrication of Macrochannelled-Hydroxyapatite Bioceramic by a Coextrusion Process. <i>Journal of the American Ceramic Society</i> , 2002 , 85, 2578-2580	3.8	36
8	Improvement of oxidation resistance of Si3N4 by heat treatment in a wet H2 atmosphere. <i>Journal of Materials Research</i> , 2002 , 17, 2321-2326	2.5	
7	Brittle Fracture versus Quasi Plasticity in Ceramics: A Simple Predictive Index. <i>Journal of the American Ceramic Society</i> , 2001 , 84, 561-565	3.8	124
6	Contact-induced Damage in Ceramic Coatings on Compliant Substrates: Fracture Mechanics and Design. <i>Journal of the American Ceramic Society</i> , 2001 , 84, 1066-1072	3.8	96
5	Improvement in oxidation resistance of TiB2 by formation of protective SiO2 layer on surface. <i>Journal of Materials Research</i> , 2001 , 16, 132-137	2.5	16
4	Microstructural evolution and mechanical properties of Si3N4BiC (nanoparticle)Bi3N4 (whisker) composites. <i>Journal of Materials Research</i> , 2000 , 15, 364-368	2.5	11
3	Oxidation Behavior and Effect of Oxidation on Strength of Si3N4/SiC Nanocomposites. <i>Journal of Materials Research</i> , 2000 , 15, 1478-1482	2.5	13
2	Reaction sintering and mechanical properties of B4C with addition of ZrO2. <i>Journal of Materials Research</i> , 2000 , 15, 2431-2436	2.5	37

Nano-Sized Hydroxyapatite Coatings on Ti Substrate with TiO2 Buffer Layer by E-beam Deposition197-203