Evgeniya Kovalska

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6700364/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Multispectral graphene-based electro-optical surfaces with reversible tunability from visible to microwave wavelengths. Nature Photonics, 2021, 15, 493-498.	31.4	97
2	2D material liquid crystals for optoelectronics and photonics. Journal of Materials Chemistry C, 2017, 5, 11185-11195.	5.5	61
3	Graphene-Enabled Optoelectronics on Paper. ACS Photonics, 2016, 3, 964-971.	6.6	56
4	Organic electrolytes for graphene-based supercapacitor: Liquid, gel or solid. Materials Today Communications, 2016, 7, 155-160.	1.9	45
5	Multi-layer graphene as a selective detector for future lung cancer biosensing platforms. Nanoscale, 2019, 11, 2476-2483.	5.6	39
6	Non-aqueous solution-processed phosphorene by controlled low-potential electrochemical exfoliation and thin film preparation. Nanoscale, 2020, 12, 2638-2647.	5.6	33
7	"Top-down―Arsenene Production by Low-Potential Electrochemical Exfoliation. Inorganic Chemistry, 2020, 59, 11259-11265.	4.0	23
8	Large-Scale Production of Nanocrystalline Black Phosphorus Ceramics. ACS Applied Materials & Interfaces, 2020, 12, 7381-7391.	8.0	23
9	High-Entropy NASICON Phosphates (Na ₃ M ₂ (PO ₄) ₃ and) Tj E Inorganic Chemistry, 2022, 61, 4092-4101.	TQq1 1 0. 4.0	.784314 rg 23
10	Mechanochemical synthesis of carbon-stabilized Cu/C, Co/C and Ni/C nanocomposites with prolonged resistance to oxidation. Scientific Reports, 2019, 9, 17435.	3.3	18
11	Single-Step Synthesis of Platinoid-Decorated Phosphorene: Perspectives for Catalysis, Gas Sensing, and Energy Storage. ACS Applied Materials & Interfaces, 2020, 12, 50516-50526.	8.0	16
12	NLL-Assisted Multilayer Graphene Patterning. ACS Omega, 2018, 3, 1546-1554.	3.5	15
13	Freeâ€Standing Black Phosphorus Foils for Energy Storage and Catalysis. Chemistry - A European Journal, 2020, 26, 8162-8169.	3.3	15
14	Edge-Hydrogenated Germanene by Electrochemical Decalcification-Exfoliation of CaGe ₂ : Germanene-Enabled Vapor Sensor. ACS Nano, 2021, 15, 16709-16718.	14.6	15
15	Self-Powered Broadband Photodetector and Sensor Based on Novel Few-Layered Pd ₃ (PS ₄) ₂ Nanosheets. ACS Applied Materials & Interfaces, 2021, 13, 30806-30817.	8.0	13
16	Functionalized germanane/SWCNT hybrid films as flexible anodes for lithium-ion batteries. Nanoscale Advances, 2021, 3, 4440-4446.	4.6	13
17	Polarization properties of few-layer graphene on silicon substrate in terahertz frequency range. SN Applied Sciences, 2019, 1, 1.	2.9	12
18	Electrochemical Exfoliation of Janus-like BiTel Nanosheets for Electrocatalytic Nitrogen Reduction. ACS Applied Nano Materials, 2021, 4, 590-599.	5.0	12

Evgeniya Kovalska

#	Article	IF	CITATIONS
19	Photocatalytic activity of twist-angle stacked 2D TaS2. Npj 2D Materials and Applications, 2021, 5, .	7.9	12
20	In situ Raman study of laserâ€induced stabilization of reduced nanoceria (CeO _{2â^'<i>x</i>}) supported on graphene. Journal of Raman Spectroscopy, 2019, 50, 490-498.	2.5	9
21	InSe:Ge-doped InSe van der Waals heterostructure to enhance photogenerated carrier separation for self-powered photoelectrochemical-type photodetectors. Nanoscale, 2022, 14, 5412-5424.	5.6	9
22	Transmission Properties of FeCl3-Intercalated Graphene and WS2 Thin Films for Terahertz Time-Domain Spectroscopy Applications. Nanoscale Research Letters, 2019, 14, 225.	5.7	8
23	Lithium-Assisted Exfoliation of Palladium Thiophosphate Nanosheets for Photoelectrocatalytic Water Splitting. ACS Applied Nano Materials, 2021, 4, 441-448.	5.0	8
24	2D WS ₂ liquid crystals: tunable functionality enabling diverse applications. Nanoscale, 2019, 11, 16886-16895.	5.6	6
25	Wireless graphene-enabled wearable temperature sensor. Journal of Physics: Conference Series, 2020, 1571, 012001.	0.4	6
26	Graphene as plasma-compatible blocking layer material for area-selective atomic layer deposition: A feasibility study for III-nitrides. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2018, 36, 01A107.	2.1	4
27	Transmission properties of van der Waals materials for terahertz time-domain spectroscopy applications. AIP Conference Proceedings, 2020, , .	0.4	3
28	Wireless Graphene Temperature Sensor. , 2020, , .		3
29	Bimolecular condensation reactions of butan-1-ol on Ag–CeO2 decorated multiwalled carbon nanotubes. Reaction Kinetics, Mechanisms and Catalysis, 2017, 122, 1063-1080.	1.7	2
30	Transmission of modified graphene layers on glass, sapphire and polyimide film substrates in UV, visible, NIR and THz spectral ranges. , 2018, , .		2
31	Multilayer graphene based tunable metasurface for terahertz wave control. , 2018, , .		2
32	Layered selenophosphate HgPSe ₃ single crystals: a new candidate for X-ray to visible light photodetectors. Journal of Materials Chemistry C, 2022, 10, 8834-8844.	5.5	2
33	Terahertz Time-Domain Polarimetry of Carbon Nanomaterials. , 2019, , .		Ο
34	Transmission properties of transition metal dichalcogenides and modified graphene thin films in visible, NIR and THz frequency ranges. , 2019, , .		0
35	Time resolved terahertz spectroscopy of optically pumped multilayered graphene on silicon substrate. , 2018, , .		0
36	Arsenene and Antimonene. , 2022, , 149-172.		0

36 Arsenene and Antimonene., 2022, , 149-172.