Max A Moritz

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6700277/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Probability-based accounting for carbon in forests to consider wildfire and other stochastic events: synchronizing science, policy, and carbon offsets. Mitigation and Adaptation Strategies for Global Change, 2022, 27, 1.	1.0	2
2	Smoke deposition to water surfaces drives hydrochemical changes. Hydrological Processes, 2022, 36, .	1.1	3
3	Understanding How Fuel Treatments Interact With Climate and Biophysical Setting to Affect Fire, Water, and Forest Health: A Process-Based Modeling Approach. Frontiers in Forests and Clobal Change, 2021, 3, .	1.0	11
4	Climate, Fuel, and Land Use Shaped the Spatial Pattern of Wildfire in California's Sierra Nevada. Journal of Geophysical Research G: Biogeosciences, 2021, 126, e2020JG005786.	1.3	21
5	Assessing climate change impacts on live fuel moisture and wildfire risk using a hydrodynamic vegetation model. Biogeosciences, 2021, 18, 4005-4020.	1.3	19
6	Relationships of climate, human activity, and fire history to spatiotemporal variation in annual fire probability across California. PLoS ONE, 2021, 16, e0254723.	1.1	3
7	Evaluating the Ability of FARSITE to Simulate Wildfires Influenced by Extreme, Downslope Winds in Santa Barbara, California. Fire, 2020, 3, 29.	1.2	26
8	Disturbance macroecology: a comparative study of community structure metrics in a highâ€severity disturbance regime. Ecosphere, 2020, 11, e03022.	1.0	21
9	Fire as a fundamental ecological process: Research advances and frontiers. Journal of Ecology, 2020, 108, 2047-2069.	1.9	281
10	Recent California tree mortality portends future increase in drought-driven forest die-off. Environmental Research Letters, 2020, 15, 124040.	2.2	20
11	Climate change likely to reshape vegetation in North America's largest protected areas. Conservation Science and Practice, 2019, 1, e50.	0.9	31
12	Do lakes feel the burn? Ecological consequences of increasing exposure of lakes to fire in the continental United States. Global Change Biology, 2019, 25, 2841-2854.	4.2	28
13	The changing water cycle: The ecoâ€hydrologic impacts of forest density reduction in Mediterranean (seasonally dry) regions. Wiley Interdisciplinary Reviews: Water, 2019, 6, e1350.	2.8	61
14	The relative influence of climate and housing development on current and projected future fire patterns and structure loss across three California landscapes. Global Environmental Change, 2019, 56, 41-55.	3.6	74
15	Emergent freeze and fire disturbance dynamics in temperate rainforests. Austral Ecology, 2019, 44, 812-826.	0.7	7
16	Plant Accessible Water Storage Capacity and Tree-Scale Root Interactions Determine How Forest Density Reductions Alter Forest Water Use and Productivity. Frontiers in Forests and Global Change, 2019, 2, .	1.0	23
17	Compound fireâ€drought regimes promote ecosystem transitions in Mediterranean ecosystems. Journal of Ecology, 2019, 107, 1187-1198.	1.9	38
18	Options for reducing house-losses during wildfires without clearing trees and shrubs. Landscape and Urban Planning, 2018, 174, 10-17.	3.4	26

#	Article	IF	CITATIONS
19	Rivers are social–ecological systems: Time to integrate human dimensions into riverscape ecology and management. Wiley Interdisciplinary Reviews: Water, 2018, 5, e1291.	2.8	63
20	Effect of Reduced Summer Cloud Shading on Evaporative Demand and Wildfire in Coastal Southern California. Geophysical Research Letters, 2018, 45, 5653-5662.	1.5	23
21	The dangers of disaster-driven responses to climate change. Nature Climate Change, 2018, 8, 651-653.	8.1	48
22	Potential relocation of climatic environments suggests high rates of climate displacement within the North American protection network. Global Change Biology, 2017, 23, 3219-3230.	4.2	48
23	Adapt to more wildfire in western North American forests as climate changes. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 4582-4590.	3.3	536
24	Defining Ecological Drought for the Twenty-First Century. Bulletin of the American Meteorological Society, 2017, 98, 2543-2550.	1.7	255
25	Foundations of translational ecology. Frontiers in Ecology and the Environment, 2017, 15, 541-550.	1.9	212
26	Navigating translational ecology: creating opportunities for scientist participation. Frontiers in Ecology and the Environment, 2017, 15, 578-586.	1.9	51
27	Cumulative effects of fire and drought in Mediterranean ecosystems. Ecosphere, 2017, 8, e01906.	1.0	35
28	Incorporating Anthropogenic Influences into Fire Probability Models: Effects of Human Activity and Climate Change on Fire Activity in California. PLoS ONE, 2016, 11, e0153589.	1.1	94
29	Effect of Tree-to-Shrub Type Conversion in Lower Montane Forests of the Sierra Nevada (USA) on Streamflow. PLoS ONE, 2016, 11, e0161805.	1.1	47
30	Averaged 30 year climate change projections mask opportunities for species establishment. Ecography, 2016, 39, 844-845.	2.1	22
31	Shrinking windows of opportunity for oak seedling establishment in southern California mountains. Ecosphere, 2016, 7, e01573.	1.0	26
32	The Science of Firescapes: Achieving Fire-Resilient Communities. BioScience, 2016, 66, 130-146.	2.2	157
33	Global combustion: the connection between fossil fuel and biomass burning emissions (1997–2010). Philosophical Transactions of the Royal Society B: Biological Sciences, 2016, 371, 20150177.	1.8	12
34	High and dry: high elevations disproportionately exposed to regional climate change in Mediterranean-climate landscapes. Landscape Ecology, 2016, 31, 1063-1075.	1.9	43
35	Coexisting with Wildfire. American Scientist, 2016, 104, 220.	0.1	12
36	Increasing elevation of fire in the Sierra Nevada and implications for forest change. Ecosphere, 2015, 6, 1-10.	1.0	54

#	Article	IF	CITATIONS
37	Land Use and Wildfire: A Review of Local Interactions and Teleconnections. Land, 2015, 4, 140-156.	1.2	47
38	Place and process in conservation planning for climate change: a reply to Keppel and Wardell-Johnson. Trends in Ecology and Evolution, 2015, 30, 234-235.	4.2	3
39	Disease, fuels and potential fire behavior: Impacts of Sudden Oak Death in two coastal California forest types. Forest Ecology and Management, 2015, 348, 23-30.	1.4	17
40	A minimal model of fire-vegetation feedbacks and disturbance stochasticity generates alternative stable states in grassland–shrubland–woodland systems. Environmental Research Letters, 2015, 10, 034018.	2.2	24
41	Effects of fire severity and post-fire climate on short-term vegetation recovery of mixed-conifer and red fir forests in the Sierra Nevada Mountains of California. Remote Sensing of Environment, 2015, 171, 311-325.	4.6	98
42	Examining Historical and Current Mixed-Severity Fire Regimes in Ponderosa Pine and Mixed-Conifer Forests of Western North America. PLoS ONE, 2014, 9, e87852.	1.1	130
43	Modeling residential development in California from 2000 to 2050: Integrating wildfire risk, wildland and agricultural encroachment. Land Use Policy, 2014, 41, 438-452.	2.5	49
44	Learning to coexist with wildfire. Nature, 2014, 515, 58-66.	13.7	739
45	Pyrogeography, historical ecology, and the human dimensions of fire regimes. Journal of Biogeography, 2014, 41, 833-836.	1.4	47
46	Fine-grain modeling of species' response to climate change: holdouts, stepping-stones, and microrefugia. Trends in Ecology and Evolution, 2014, 29, 390-397.	4.2	272
47	Large wildfire trends in the western United States, 1984–2011. Geophysical Research Letters, 2014, 41, 2928-2933.	1.5	940
48	Remote Sensing Analysis of Vegetation Recovery following Short-Interval Fires in Southern California Shrublands. PLoS ONE, 2014, 9, e110637.	1.1	45
49	Bounded ranges of variation as a framework for future conservation and fire management. Annals of the New York Academy of Sciences, 2013, 1286, 92-107.	1.8	40
50	Spatial Characterization of Wildfire Orientation Patterns in California. Forests, 2013, 4, 197-217.	0.9	8
51	Climate changeâ€induced shifts in fire for <scp>M</scp> editerranean ecosystems. Global Ecology and Biogeography, 2013, 22, 1118-1129.	2.7	130
52	Spatial variability in wildfire probability across the western United States. International Journal of Wildland Fire, 2012, 21, 313.	1.0	135
53	Wildfires ignite debate on global warming. Nature, 2012, 487, 273-273.	13.7	12
54	Climate change and disruptions to global fire activity. Ecosphere, 2012, 3, 1-22.	1.0	650

#	Article	IF	CITATIONS
55	Land Management Practices Associated with House Loss in Wildfires. PLoS ONE, 2012, 7, e29212.	1.1	163
56	Sudden oak death disease progression across two forest types and spatial scales. Journal of Vegetation Science, 2012, 23, 151-163.	1.1	18
57	Constraints on global fire activity vary across a resource gradient. Ecology, 2011, 92, 121-132.	1.5	348
58	Landscape-Scale Vegetation Change Following Fire in Point Reyes, California, USA. Fire Ecology, 2011, 7, 114-128.	1.1	22
59	The human dimension of fire regimes on Earth. Journal of Biogeography, 2011, 38, 2223-2236.	1.4	845
60	Contributions of Ignitions, Fuels, and Weather to the Spatial Patterns of Burn Probability of a Boreal Landscape. Ecosystems, 2011, 14, 1141-1155.	1.6	72
61	Modelling long-term fire regimes of southern California shrublands. International Journal of Wildland Fire, 2011, 20, 1.	1.0	32
62	Research on fire and ecosystem services must incorporate climate realities. California Agriculture, 2011, 65, 176-176.	0.5	0
63	Alternative community states maintained by fire in the Klamath Mountains, USA. Journal of Ecology, 2010, 98, 96-105.	1.9	176
64	Physiological Effects of Smoke Exposure on Deciduous and Conifer Tree Species. International Journal of Forestry Research, 2010, 2010, 1-7.	0.2	13
65	Spatial variation in extreme winds predicts large wildfire locations in chaparral ecosystems. Geophysical Research Letters, 2010, 37, .	1.5	120
66	Critical live fuel moisture in chaparral ecosystems: a threshold for fire activity and its relationship to antecedent precipitation. International Journal of Wildland Fire, 2009, 18, 1021.	1.0	93
67	Environmental controls on the distribution of wildfire at multiple spatial scales. Ecological Monographs, 2009, 79, 127-154.	2.4	277
68	The fire frequency analysis branch of the pyrostatistics tree: sampling decisions and censoring in fire interval data. Environmental and Ecological Statistics, 2009, 16, 271-289.	1.9	55
69	Fire regimes of China: inference from statistical comparison with the United States. Global Ecology and Biogeography, 2009, 18, 626-639.	2.7	21
70	Fire in the Earth System. Science, 2009, 324, 481-484.	6.0	2,330
71	Global Pyrogeography: the Current and Future Distribution of Wildfire. PLoS ONE, 2009, 4, e5102.	1.1	710
72	Predicting the effect of climate change on wildfire behavior and initial attack success. Climatic Change, 2008, 87, 251-264.	1.7	65

#	Article	IF	CITATIONS
73	Fire and sustainability: considerations for California's altered future climate. Climatic Change, 2008, 87, 265-271.	1.7	40
74	Classification of the wildland–urban interface: A comparison of pixel- and object-based classifications using high-resolution aerial photography. Computers, Environment and Urban Systems, 2008, 32, 317-326.	3.3	230
75	The Fire Information Engine. Journal of Map and Geography Libraries, 2008, 4, 195-206.	0.1	3
76	Evaluating predictive models of critical live fuel moisture in the Santa Monica Mountains, California. International Journal of Wildland Fire, 2008, 17, 18.	1.0	77
77	Setting Wildfire Evacuation Trigger Points Using Fire Spread Modeling and CIS. Transactions in GIS, 2005, 9, 603-617.	1.0	81
78	Examining the strength and possible causes of the relationship between fire history and Sudden Oak Death. Oecologia, 2005, 144, 106-114.	0.9	20
79	Wildfires, complexity, and highly optimized tolerance. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 17912-17917.	3.3	183
80	Prescribed Fire and Natural Disturbance. Science, 2004, 306, 1680.2-1680.	6.0	17
81	Testing a basic assumption of shrubland fire management: how important is fuel age?. Frontiers in Ecology and the Environment, 2004, 2, 67-72.	1.9	142
82	Patterns of Fire Severity and Forest Conditions in the Western Klamath Mountains, California. Conservation Biology, 2004, 18, 927-936.	2.4	137
83	SPATIOTEMPORAL ANALYSIS OF CONTROLS ON SHRUBLAND FIRE REGIMES: AGE DEPENDENCY AND FIRE HAZARD. Ecology, 2003, 84, 351-361.	1.5	152
84	Are Large, Infrequent Disturbances Qualitatively Different from Small, Frequent Disturbances?. Ecosystems, 1998, 1, 524-534.	1.6	168
85	ANALYZING EXTREME DISTURBANCE EVENTS: FIRE IN LOS PADRES NATIONAL FOREST. , 1997, 7, 1252-1262.		131
86	Quantifying septic nitrogen loadings to receiving waters: Waquoit Bay, Massachusetts. International Journal of Geographical Information Science, 1995, 9, 463-473.	2.2	13