Gustavo Deco

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/6700219/gustavo-deco-publications-by-year.pdf

Version: 2024-04-23

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

17,618 119 439 70 h-index g-index citations papers 23,043 7.3 515 5.7 L-index avg, IF ext. citations ext. papers

#	Paper	IF	Citations
439	Dynamic primitives of brain network interaction Special Issue "Advances in Mapping the Connectome" <i>Neurolmage</i> , 2022 , 250, 118928	7.9	1
438	The human orbitofrontal cortex, vmPFC, and anterior cingulate cortex effective connectome: emotion, memory, and action <i>Cerebral Cortex</i> , 2022 ,	5.1	6
437	Brain simulation as a cloud service: The Virtual Brain on EBRAINS <i>NeuroImage</i> , 2022 , 118973	7.9	4
436	The Effective Connectivity of the Human Hippocampal Memory System Cerebral Cortex, 2022,	5.1	6
435	Whole-brain modeling to predict optimal deep brain stimulation targeting 2022 , 543-559		O
434	Large-scale societal dynamics are reflected in human mood and brain Scientific Reports, 2022, 12, 4646	5 4.9	
433	On the intersection between data quality and dynamical modelling of large-scale fMRI signals <i>NeuroImage</i> , 2022 , 119051	7.9	3
432	Microbiota alterations in proline metabolism impact depression Cell Metabolism, 2022, 34, 681-701.e1	024.6	7
431	Psychedelic Resting-state Neuroimaging: A Review and Perspective on Balancing Replication and Novel Analyses <i>Neuroscience and Biobehavioral Reviews</i> , 2022 , 104689	9	3
430	Whole-brain dynamics differentiate among cisgender and transgender individuals <i>Human Brain Mapping</i> , 2022 ,	5.9	1
429	Edge-centric analysis of stroke patients: An alternative approach for biomarkers of lesion recovery. <i>NeuroImage: Clinical</i> , 2022 , 35, 103055	5.3	O
428	The human language effective connectome. <i>NeuroImage</i> , 2022 , 119352	7.9	3
427	Spontaneous Activity, Models of 2022 , 3289-3293		
426	Multiscale Brain Connectivity 2022 , 2105-2107		
425	Toward Noninvasive Brain Stimulation 2.0 in Alzheimer's Disease <i>Ageing Research Reviews</i> , 2021 , 75, 101555	12	2
424	Sensory-motor cortices shape functional connectivity dynamics in the human brain. <i>Nature Communications</i> , 2021 , 12, 6373	17.4	4
423	Effective connectivity extracts clinically relevant prognostic information from resting state activity in stroke. <i>Brain Communications</i> , 2021 , 3, fcab233	4.5	1

(2021-2021)

422	Revealing the Relevant Spatiotemporal Scale Underlying Whole-Brain Dynamics. <i>Frontiers in Neuroscience</i> , 2021 , 15, 715861	5.1	О
421	mTOR-related synaptic pathology causes autism spectrum disorder-associated functional hyperconnectivity. <i>Nature Communications</i> , 2021 , 12, 6084	17.4	10
420	The phase of Theta oscillations modulates successful memory formation at encoding. <i>Neuropsychologia</i> , 2021 , 154, 107775	3.2	1
419	Bridging the gap between single receptor type activity and whole-brain dynamics. <i>FEBS Journal</i> , 2021 ,	5.7	1
418	Increased sensitivity to strong perturbations in a whole-brain model of LSD. <i>NeuroImage</i> , 2021 , 230, 11	7 8 09	4
417	Multiscale dynamic mean field (MDMF) model relates resting-state brain dynamics with local cortical excitatory-inhibitory neurotransmitter homeostasis. <i>Network Neuroscience</i> , 2021 , 5, 757-782	5.6	3
416	Brain Connectivity Studies on Structure-Function Relationships: A Short Survey with an Emphasis on Machine Learning. <i>Computational Intelligence and Neuroscience</i> , 2021 , 2021, 5573740	3	3
415	Leonardo da Vinci and the search for order in neuroscience. Current Biology, 2021, 31, R704-R709	6.3	4
414	Circuit mechanisms for the chemical modulation of cortex-wide network interactions and behavioral variability. <i>Science Advances</i> , 2021 , 7,	14.3	6
413	Decoding brain states on the intrinsic manifold of human brain dynamics across wakefulness and sleep. <i>Communications Biology</i> , 2021 , 4, 854	6.7	4
412	Dynamical consequences of regional heterogeneity in the brain's transcriptional landscape. <i>Science Advances</i> , 2021 , 7,	14.3	11
411	Signature of consciousness in brain-wide synchronization patterns of monkey and human fMRI signals. <i>NeuroImage</i> , 2021 , 226, 117470	7.9	14
410	Whole-Brain Dynamics in Aging: Disruptions in Functional Connectivity and the Role of the Rich Club. <i>Cerebral Cortex</i> , 2021 , 31, 2466-2481	5.1	3
409	Hierarchical disruption in the cortex of anesthetized monkeys as a new signature of consciousness loss. <i>NeuroImage</i> , 2021 , 227, 117618	7.9	O
408	Revisiting the global workspace orchestrating the hierarchical organization of the human brain. <i>Nature Human Behaviour</i> , 2021 , 5, 497-511	12.8	19
407	Increased brain atrophy and lesion load is associated with stronger lower alpha MEG power in multiple sclerosis patients. <i>NeuroImage: Clinical</i> , 2021 , 30, 102632	5.3	3
406	Noise-driven multistability vs deterministic chaos in phenomenological semi-empirical models of whole-brain activity. <i>Chaos</i> , 2021 , 31, 023127	3.3	4
405	Ephaptic coupling in white matter fibre bundles modulates axonal transmission delays. <i>PLoS Computational Biology</i> , 2021 , 17, e1007858	5	3

404	Genetic influences on hub connectivity of the human connectome. <i>Nature Communications</i> , 2021 , 12, 4237	17.4	17
403	Perturbations in dynamical models of whole-brain activity dissociate between the level and stability of consciousness. <i>PLoS Computational Biology</i> , 2021 , 17, e1009139	5	8
402	Nonequilibrium brain dynamics as a signature of consciousness. <i>Physical Review E</i> , 2021 , 104, 014411	2.4	2
401	Classification of Complex Emotions Using EEG and Virtual Environment: Proof of Concept and Therapeutic Implication. <i>Frontiers in Human Neuroscience</i> , 2021 , 15, 711279	3.3	O
400	Functional harmonics reveal multi-dimensional basis functions underlying cortical organization. <i>Cell Reports</i> , 2021 , 36, 109554	10.6	1
399	Rare long-range cortical connections enhance human information processing. <i>Current Biology</i> , 2021 , 31, 4436-4448.e5	6.3	8
398	Loss of consciousness reduces the stability of brain hubs and the heterogeneity of brain dynamics. <i>Communications Biology</i> , 2021 , 4, 1037	6.7	2
397	The effect of noise on the synchronization dynamics of the Kuramoto model on a large human connectome graph. <i>Neurocomputing</i> , 2021 , 461, 696-704	5.4	1
396	The Menstrual Cycle Modulates Whole-Brain Turbulent Dynamics <i>Frontiers in Neuroscience</i> , 2021 , 15, 753820	5.1	2
395	Turbulent-like Dynamics in the Human Brain. <i>Cell Reports</i> , 2020 , 33, 108471	10.6	17
395 394	Turbulent-like Dynamics in the Human Brain. <i>Cell Reports</i> , 2020 , 33, 108471 The Aging Imageomics Study: rationale, design and baseline characteristics of the study population. <i>Mechanisms of Ageing and Development</i> , 2020 , 189, 111257	10.6 5.6	17 6
	The Aging Imageomics Study: rationale, design and baseline characteristics of the study population.	5.6	<u> </u>
394	The Aging Imageomics Study: rationale, design and baseline characteristics of the study population. Mechanisms of Ageing and Development, 2020, 189, 111257	5.6	6
394	The Aging Imageomics Study: rationale, design and baseline characteristics of the study population. <i>Mechanisms of Ageing and Development</i> , 2020 , 189, 111257 Lifespan associated global patterns of coherent neural communication. <i>NeuroImage</i> , 2020 , 216, 116824 Reduced spatiotemporal brain dynamics are associated with increased depressive symptoms after a	5.6 7.9	8
394 393 392	The Aging Imageomics Study: rationale, design and baseline characteristics of the study population. <i>Mechanisms of Ageing and Development</i> , 2020 , 189, 111257 Lifespan associated global patterns of coherent neural communication. <i>NeuroImage</i> , 2020 , 216, 116824 Reduced spatiotemporal brain dynamics are associated with increased depressive symptoms after a relationship breakup. <i>NeuroImage: Clinical</i> , 2020 , 27, 102299 Propagation of BOLD Activity Reveals Task-dependent Directed Interactions Across Human Visual	5.6 7.9 5.3	6 8 5
394 393 392 391	The Aging Imageomics Study: rationale, design and baseline characteristics of the study population. <i>Mechanisms of Ageing and Development</i> , 2020 , 189, 111257 Lifespan associated global patterns of coherent neural communication. <i>NeuroImage</i> , 2020 , 216, 116824 Reduced spatiotemporal brain dynamics are associated with increased depressive symptoms after a relationship breakup. <i>NeuroImage: Clinical</i> , 2020 , 27, 102299 Propagation of BOLD Activity Reveals Task-dependent Directed Interactions Across Human Visual Cortex. <i>Cerebral Cortex</i> , 2020 , 30, 5899-5914 Data augmentation based on dynamical systems for the classification of brain states. <i>Chaos</i> ,	5.6 7.9 5.3	6 8 5
394 393 392 391 390	The Aging Imageomics Study: rationale, design and baseline characteristics of the study population. <i>Mechanisms of Ageing and Development</i> , 2020 , 189, 111257 Lifespan associated global patterns of coherent neural communication. <i>NeuroImage</i> , 2020 , 216, 116824 Reduced spatiotemporal brain dynamics are associated with increased depressive symptoms after a relationship breakup. <i>NeuroImage: Clinical</i> , 2020 , 27, 102299 Propagation of BOLD Activity Reveals Task-dependent Directed Interactions Across Human Visual Cortex. <i>Cerebral Cortex</i> , 2020 , 30, 5899-5914 Data augmentation based on dynamical systems for the classification of brain states. <i>Chaos</i> , <i>Solitons and Fractals</i> , 2020 , 139, 110069 Dynamic coupling of whole-brain neuronal and neurotransmitter systems. <i>Proceedings of the</i>	5.6 7.9 5.3 5.1 9.3	6 8 5 3

386	Human brain connectivity: Clinical applications for clinical neurophysiology. <i>Clinical Neurophysiology</i> , 2020 , 131, 1621-1651	4.3	23
385	Cortical state transitions and stimulus response evolve along stiff and sloppy parameter dimensions, respectively. <i>ELife</i> , 2020 , 9,	8.9	4
384	Uncovering the spatiotemporal scales of common neuro-mental constructs: Comment on "Is temporo-spatial dynamics the 'common currency' of brain and mind? In Quest of 'Spatiotemporal Neuroscience'" by Georg Northoff et al. <i>Physics of Life Reviews</i> , 2020 , 33, 64-66	2.1	О
383	Effective connectivity in autism. <i>Autism Research</i> , 2020 , 13, 32-44	5.1	10
382	Low entropy map of brain oscillatory activity identifies spatially localized events: A new method for automated epilepsy focus prediction. <i>NeuroImage</i> , 2020 , 208, 116410	7.9	О
381	Model-based whole-brain effective connectivity to study distributed cognition in health and disease. <i>Network Neuroscience</i> , 2020 , 4, 338-373	5.6	10
380	Brain States and Transitions: Insights from Computational Neuroscience. <i>Cell Reports</i> , 2020 , 32, 108128	10.6	40
379	The Dynamics of Functional Brain Networks Associated With Depressive Symptoms in a Nonclinical Sample. <i>Frontiers in Neural Circuits</i> , 2020 , 14, 570583	3.5	7
378	Generative Embeddings of Brain Collective Dynamics Using Variational Autoencoders. <i>Physical Review Letters</i> , 2020 , 125, 238101	7.4	5
377	Harmonic waves as the fundamental principle underlying temporo-spatial dynamics of brain and mind: Comment on "Is temporo-spatial dynamics the "common currency" of brain and mind? In Quest of "Spatiotemporal Neuroscience"" Georg Northoff et al. <i>Physics of Life Reviews</i> , 2020 , 33, 67-69	2.1	1
376	Breakdown of Whole-brain Dynamics in Preterm-born Children. <i>Cerebral Cortex</i> , 2020 , 30, 1159-1170	5.1	5
375	Modeling regional changes in dynamic stability during sleep and wakefulness. <i>NeuroImage</i> , 2020 , 215, 116833	7.9	20
374	Awakening: Predicting external stimulation to force transitions between different brain states. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 18088-18097	,11.5	65
373	Disrupted brain structural connectivity in Pediatric Bipolar Disorder with psychosis. <i>Scientific Reports</i> , 2019 , 9, 13638	4.9	11
372	Brain songs framework used for discovering the relevant timescale of the human brain. <i>Nature Communications</i> , 2019 , 10, 583	17.4	26
371	Dynamical exploration of the repertoire of brain networks at rest is modulated by psilocybin. <i>NeuroImage</i> , 2019 , 199, 127-142	7.9	53
370	A new computational approach to estimate whole-brain effective connectivity from functional and structural MRI, applied to language development. <i>Scientific Reports</i> , 2019 , 9, 8479	4.9	12
369	Reliable local dynamics in the brain across sessions are revealed by whole-brain modeling of resting state activity. <i>Human Brain Mapping</i> , 2019 , 40, 2967-2980	5.9	19

368	Neural mechanisms of vibrotactile categorization. Human Brain Mapping, 2019, 40, 3078-3090	5.9	4
367	Altered ability to access a clinically relevant control network in patients remitted from major depressive disorder. <i>Human Brain Mapping</i> , 2019 , 40, 2771-2786	5.9	24
366	Primate Amygdala Neurons Simulate Decision Processes of Social Partners. <i>Cell</i> , 2019 , 177, 986-998.e15	5 56.2	43
365	Feed-forward information and zero-lag synchronization in the sensory thalamocortical circuit are modulated during stimulus perception. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2019 , 116, 7513-7522	11.5	9
364	Human consciousness is supported by dynamic complex patterns of brain signal coordination. <i>Science Advances</i> , 2019 , 5, eaat7603	14.3	147
363	Does Bilingualism Alter Lexical Structure? Response to Oppenheim, Wu, and Thierry (2018). <i>Cognitive Science</i> , 2019 , 43, e12707	2.2	4
362	Whole-brain modeling of neuroimaging data: Moving beyond correlation to causation 2019 , 139-143		О
361	Characterizing the Dynamical Complexity Underlying Meditation. <i>Frontiers in Systems Neuroscience</i> , 2019 , 13, 27	3.5	12
360	Network analysis of whole-brain fMRI dynamics: A new framework based on dynamic communicability. <i>NeuroImage</i> , 2019 , 201, 116007	7.9	9
359	Imaging Connectomics and the Understanding of Brain Diseases. <i>Advances in Experimental Medicine and Biology</i> , 2019 , 1192, 139-158	3.6	
358	Playing at the Edge of Criticality: Expanded Whole-Brain Repertoire of Connectome-Harmonics. <i>Springer Series on Bio- and Neurosystems</i> , 2019 , 27-45	0.5	5
357	Inversion of a large-scale circuit model reveals a cortical hierarchy in the dynamic resting human brain. <i>Science Advances</i> , 2019 , 5, eaat7854	14.3	97
356	Portraits of communication in neuronal networks. <i>Nature Reviews Neuroscience</i> , 2019 , 20, 117-127	13.5	60
355	Traces of statistical learning in the brain's functional connectivity after artificial language exposure. <i>Neuropsychologia</i> , 2019 , 124, 246-253	3.2	
354	Distinct modes of functional connectivity induced by movie-watching. <i>NeuroImage</i> , 2019 , 184, 335-348	7.9	13
353	Resting state dynamics meets anatomical structure: Temporal multiple kernel learning (tMKL) model. <i>NeuroImage</i> , 2019 , 184, 609-620	7.9	12
352	Scale-freeness or partial synchronization in neural mass phase oscillator networks: Pick one of two?. <i>NeuroImage</i> , 2018 , 180, 428-441	7.9	6
351	Increased methylation at an unexplored glucocorticoid responsive element within exon 1 of NR3C1 gene is related to anxious-depressive disorders and decreased hippocampal connectivity. <i>European Neuropsychopharmacology</i> , 2018 , 28, 579-588	1.2	37

(2018-2018)

350	The dynamics of human cognition: Increasing global integration coupled with decreasing segregation found using iEEG. <i>NeuroImage</i> , 2018 , 172, 492-505	7.9	9
349	Computational Models of Dysconnectivity in Large-Scale Resting-State Networks 2018 , 87-116		2
348	Stereotypical modulations in dynamic functional connectivity explained by changes in BOLD variance. <i>NeuroImage</i> , 2018 , 171, 40-54	7.9	14
347	Distinct criticality of phase and amplitude dynamics in the resting brain. <i>NeuroImage</i> , 2018 , 180, 442-44	1 7 7.9	17
346	Linking Entropy at Rest with the Underlying Structural Connectivity in the Healthy and Lesioned Brain. <i>Cerebral Cortex</i> , 2018 , 28, 2948-2958	5.1	14
345	Effective Connectivity in Depression. <i>Biological Psychiatry: Cognitive Neuroscience and Neuroimaging</i> , 2018 , 3, 187-197	3.4	25
344	Effective connectivity inferred from fMRI transition dynamics during movie viewing points to a balanced reconfiguration of cortical interactions. <i>NeuroImage</i> , 2018 , 180, 534-546	7.9	35
343	Harmonic Brain Modes: A Unifying Framework for Linking Space and Time in Brain Dynamics. <i>Neuroscientist</i> , 2018 , 24, 277-293	7.6	44
342	Degenerate time-dependent network dynamics anticipate seizures in human epileptic brain. <i>PLoS Biology</i> , 2018 , 16, e2002580	9.7	7
341	Source-reconstruction of the sensorimotor network from resting-state macaque electrocorticography. <i>NeuroImage</i> , 2018 , 181, 347-358	7.9	7
340	Task-related effective connectivity reveals that the cortical rich club gates cortex-wide communication. <i>Human Brain Mapping</i> , 2018 , 39, 1246-1262	5.9	17
339	Perturbation of whole-brain dynamics in silico reveals mechanistic differences between brain states. <i>NeuroImage</i> , 2018 , 169, 46-56	7.9	41
338	Whole-Brain Neuronal Activity Displays Crackling Noise Dynamics. <i>Neuron</i> , 2018 , 100, 1446-1459.e6	13.9	47
337	Whole-Brain Multimodal Neuroimaging Model Using Serotonin Receptor Maps Explains Non-linear Functional Effects of LSD. <i>Current Biology</i> , 2018 , 28, 3065-3074.e6	6.3	69
336	Common neural signatures of psychedelics: Frequency-specific energy changes and repertoire expansion revealed using connectome-harmonic decomposition. <i>Progress in Brain Research</i> , 2018 , 242, 97-120	2.9	20
335	Resting-State Functional Connectivity Magnetic Resonance Imaging and Outcome After Acute Stroke. <i>Stroke</i> , 2018 , 49, 2353-2360	6.7	35
334	Extracting orthogonal subject- and condition-specific signatures from fMRI data using whole-brain effective connectivity. <i>NeuroImage</i> , 2018 , 178, 238-254	7.9	22
333	Inferring multi-scale neural mechanisms with brain network modelling. <i>ELife</i> , 2018 , 7,	8.9	80

332	Detection of recurrent activation patterns across focal seizures: Application to seizure onset zone identification. <i>Clinical Neurophysiology</i> , 2017 , 128, 977-985	4.3	8
331	Understanding principles of integration and segregation using whole-brain computational connectomics: implications for neuropsychiatric disorders. <i>Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences</i> , 2017 , 375,	3	49
330	Metastability in Senescence. <i>Trends in Cognitive Sciences</i> , 2017 , 21, 509-521	14	27
329	Decreased integration and information capacity in stroke measured by whole brain models of resting state activity. <i>Brain</i> , 2017 , 140, 1068-1085	11.2	46
328	Hierarchy of Information Processing in the Brain: A Novel 'Intrinsic Ignition' Framework. <i>Neuron</i> , 2017 , 94, 961-968	13.9	51
327	Functional connectivity dynamically evolves on multiple time-scales over a static structural connectome: Models and mechanisms. <i>Neurolmage</i> , 2017 , 160, 84-96	7.9	158
326	Single or multiple frequency generators in on-going brain activity: A mechanistic whole-brain model of empirical MEG data. <i>NeuroImage</i> , 2017 , 152, 538-550	7.9	87
325	Large-scale Computational Models of Ongoing Brain Activity 2017 , 425-437		2
324	Linear distributed source modeling of local field potentials recorded with intra-cortical electrode arrays. <i>PLoS ONE</i> , 2017 , 12, e0187490	3.7	3
323	Multiple Choice Neurodynamical Model of the Uncertain Option Task. <i>PLoS Computational Biology</i> , 2017 , 13, e1005250	5	4
322	26th Annual Computational Neuroscience Meeting (CNS*2017): Part 2. <i>BMC Neuroscience</i> , 2017 , 18,	3.2	5
321	Effect of Field Spread on Resting-State Magneto Encephalography Functional Network Analysis: A Computational Modeling Study. <i>Brain Connectivity</i> , 2017 , 7, 541-557	2.7	5
320	A whole-brain computational modeling approach to explain the alterations in resting-state functional connectivity during progression of Alzheimer's disease. <i>NeuroImage: Clinical</i> , 2017 , 16, 343-3	5 43	34
319	Uncovering the underlying mechanisms and whole-brain dynamics of deep brain stimulation for Parkinson's disease. <i>Scientific Reports</i> , 2017 , 7, 9882	4.9	55
318	Time-Resolved Resting-State Functional Magnetic Resonance Imaging Analysis: Current Status, Challenges, and New Directions. <i>Brain Connectivity</i> , 2017 , 7, 465-481	2.7	53
317	Resting state networks in empirical and simulated dynamic functional connectivity. <i>NeuroImage</i> , 2017 , 159, 388-402	7.9	20
316	The dynamics of resting fluctuations in the brain: metastability and its dynamical cortical core.		4 7 5
	Scientific Reports, 2017 , 7, 3095	4.9	175

(2016-2017)

314	Visual stimulation quenches global alpha range activity in awake primate V4: a case study. <i>Neurophotonics</i> , 2017 , 4, 031222	3.9	1
313	Increased Stability and Breakdown of Brain Effective Connectivity During Slow-Wave Sleep: Mechanistic Insights from Whole-Brain Computational Modelling. <i>Scientific Reports</i> , 2017 , 7, 4634	4.9	48
312	Resting-state fMRI correlations: From link-wise unreliability to whole brain stability. <i>NeuroImage</i> , 2017 , 157, 250-262	7.9	50
311	Do Bilinguals Automatically Activate Their Native Language When They Are Not Using It?. <i>Cognitive Science</i> , 2017 , 41, 1629-1644	2.2	71
310	Cortical rich club regions can organize state-dependent functional network formation by engaging in oscillatory behavior. <i>NeuroImage</i> , 2017 , 146, 561-574	7.9	28
309	The most relevant human brain regions for functional connectivity: Evidence for a dynamical workspace of binding nodes from whole-brain computational modelling. <i>NeuroImage</i> , 2017 , 146, 197-21	8 .9	32
308	Neural Plasticity in Human Brain Connectivity 2017 , 527-546		
307	Connectome-harmonic decomposition of human brain activity reveals dynamical repertoire re-organization under LSD. <i>Scientific Reports</i> , 2017 , 7, 17661	4.9	84
306	Reply: Defining a functional network homeostasis after stroke: EEG-based approach is complementary to functional MRI. <i>Brain</i> , 2017 , 140, e72	11.2	O
305	Spontaneous cortical activity is transiently poised close to criticality. <i>PLoS Computational Biology</i> , 2017 , 13, e1005543	5	49
304	Novel Intrinsic Ignition Method Measuring Local-Global Integration Characterizes Wakefulness and Deep Sleep. <i>ENeuro</i> , 2017 , 4,	3.9	27
303	Non-reward neural mechanisms in the orbitofrontal cortex. <i>Cortex</i> , 2016 , 83, 27-38	3.8	13
302	Learning a New Selection Rule in Visual and Frontal Cortex. Cerebral Cortex, 2016, 26, 3611-26	5.1	1
301	Metastability and Coherence: Extending the Communication through Coherence Hypothesis Using A Whole-Brain Computational Perspective. <i>Trends in Neurosciences</i> , 2016 , 39, 125-135	13.3	104
300	Altered resting-state whole-brain functional networks of neonates with intrauterine growth restriction. <i>Cortex</i> , 2016 , 77, 119-131	3.8	17
299	Can sliding-window correlations reveal dynamic functional connectivity in resting-state fMRI?. <i>NeuroImage</i> , 2016 , 127, 242-256	7.9	351
298	Discrepancies between Multi-Electrode LFP and CSD Phase-Patterns: A Forward Modeling Study. <i>Frontiers in Neural Circuits</i> , 2016 , 10, 51	3.5	13
297	Insights into Brain Architectures from the Homological Scaffolds of Functional Connectivity Networks. <i>Frontiers in Systems Neuroscience</i> , 2016 , 10, 85	3.5	27

296	Estimation of Directed Effective Connectivity from fMRI Functional Connectivity Hints at Asymmetries of Cortical Connectome. <i>PLoS Computational Biology</i> , 2016 , 12, e1004762	5	84
295	Environmental factors linked to depression vulnerability are associated with altered cerebellar resting-state synchronization. <i>Scientific Reports</i> , 2016 , 6, 37384	4.9	17
294	Functional complexity emerging from anatomical constraints in the brain: the significance of network modularity and rich-clubs. <i>Scientific Reports</i> , 2016 , 6, 38424	4.9	48
293	Confidence through consensus: a neural mechanism for uncertainty monitoring. <i>Scientific Reports</i> , 2016 , 6, 21830	4.9	11
292	Hippocampal Sharp-Wave Ripples Influence Selective Activation of the Default Mode Network. <i>Current Biology</i> , 2016 , 26, 686-91	6.3	58
291	Does the regulation of local excitation-inhibition balance aid in recovery of functional connectivity? A computational account. <i>NeuroImage</i> , 2016 , 136, 57-67	7.9	12
29 0	Neural correlates of metacognition: A critical perspective on current tasks. <i>Neuroscience and Biobehavioral Reviews</i> , 2016 , 71, 167-175	9	13
289	Dynamic functional connectivity reveals altered variability in functional connectivity among patients with major depressive disorder. <i>Human Brain Mapping</i> , 2016 , 37, 2918-30	5.9	104
288	Deconstructing multisensory enhancement in detection. <i>Journal of Neurophysiology</i> , 2015 , 113, 1800-1	83.2	11
287	Novel fingerprinting method characterises the necessary and sufficient structural connectivity from deep brain stimulation electrodes for a successful outcome. <i>New Journal of Physics</i> , 2015 , 17, 015	0 6 9	20
286	Functional connectivity dynamics: modeling the switching behavior of the resting state. <i>NeuroImage</i> , 2015 , 105, 525-35	7.9	308
285	Resting-state temporal synchronization networks emerge from connectivity topology and heterogeneity. <i>PLoS Computational Biology</i> , 2015 , 11, e1004100	5	139
284	Rethinking segregation and integration: contributions of whole-brain modelling. <i>Nature Reviews Neuroscience</i> , 2015 , 16, 430-9	13.5	291
283	Task-driven intra- and interarea communications in primate cerebral cortex. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2015 , 112, 4761-6	11.5	23
282	Gradual emergence of spontaneous correlated brain activity during fading of general anesthesia in rats: Evidences from fMRI and local field potentials. <i>NeuroImage</i> , 2015 , 114, 185-98	7.9	54
281	The Rediscovery of Slowness: Exploring the Timing of Cognition. <i>Trends in Cognitive Sciences</i> , 2015 , 19, 616-628	14	65
280	Role of white-matter pathways in coordinating alpha oscillations in resting visual cortex. <i>NeuroImage</i> , 2015 , 106, 328-39	7.9	29
279	Dynamic model of whole cortex reveals disassortative hub structure in the intracortical connectome. <i>BMC Neuroscience</i> , 2015 , 16, P57	3.2	78

(2014-2015)

278	Altered amygdalar resting-state connectivity in depression is explained by both genes and environment. <i>Human Brain Mapping</i> , 2015 , 36, 3761-76	5.9	8
277	Evidence from a rare case study for Hebbian-like changes in structural connectivity induced by long-term deep brain stimulation. <i>Frontiers in Behavioral Neuroscience</i> , 2015 , 9, 167	3.5	14
276	Network dynamics with BrainX(3): a large-scale simulation of the human brain network with real-time interaction. <i>Frontiers in Neuroinformatics</i> , 2015 , 9, 02	3.9	39
275	Task-Driven Activity Reduces the Cortical Activity Space of the Brain: Experiment and Whole-Brain Modeling. <i>PLoS Computational Biology</i> , 2015 , 11, e1004445	5	49
274	The Encoding of Decision Difficulty and Movement Time in the Primate Premotor Cortex. <i>PLoS Computational Biology</i> , 2015 , 11, e1004502	5	2
273	Networks for memory, perception, and decision-making, and beyond to how the syntax for language might be implemented in the brain. <i>Brain Research</i> , 2015 , 1621, 316-34	3.7	18
272	Computational modeling of resting-state activity demonstrates markers of normalcy in children with prenatal or perinatal stroke. <i>Journal of Neuroscience</i> , 2015 , 35, 8914-24	6.6	22
271	Stochastic cortical neurodynamics underlying the memory and cognitive changes in aging. <i>Neurobiology of Learning and Memory</i> , 2015 , 118, 150-61	3.1	22
270	Network Events on Multiple Space and Time Scales in Cultured Neural Networks and in a Stochastic Rate Model. <i>PLoS Computational Biology</i> , 2015 , 11, e1004547	5	19
269	Rich club organization supports a diverse set of functional network configurations. <i>NeuroImage</i> , 2014 , 96, 174-82	7.9	96
268	How delays matter in an oscillatory whole-brain spiking-neuron network model for MEG alpha-rhythms at rest. <i>NeuroImage</i> , 2014 , 87, 383-94	7.9	29
267	Exploring the network dynamics underlying brain activity during rest. <i>Progress in Neurobiology</i> , 2014 , 114, 102-31	10.9	228
266	Using the virtual brain to reveal the role of oscillations and plasticity in shaping brain's dynamical landscape. <i>Brain Connectivity</i> , 2014 , 4, 791-811	2.7	34
265	Intra-cortical propagation of EEG alpha oscillations. <i>NeuroImage</i> , 2014 , 103, 444-453	7.9	41
264	Role of external stimulation in shaping evoked activity in a macroscopic model of cortex. <i>BMC Neuroscience</i> , 2014 , 15,	3.2	78
263	Exploring mechanisms of spontaneous functional connectivity in MEG: how delayed network interactions lead to structured amplitude envelopes of band-pass filtered oscillations. <i>NeuroImage</i> , 2014 , 90, 423-35	7.9	175
262	Critical Slowing and Perception 2014 , 191-226		2
261	Identification of optimal structural connectivity using functional connectivity and neural modeling. <i>Journal of Neuroscience</i> , 2014 , 34, 7910-6	6.6	108

260	Modeling resting-state functional networks when the cortex falls asleep: local and global changes. <i>Cerebral Cortex</i> , 2014 , 24, 3180-94	5.1	50
259	How local excitation-inhibition ratio impacts the whole brain dynamics. <i>Journal of Neuroscience</i> , 2014 , 34, 7886-98	6.6	180
258	Neural plasticity in human brain connectivity: the effects of long term deep brain stimulation of the subthalamic nucleus in Parkinson's disease. <i>PLoS ONE</i> , 2014 , 9, e86496	3.7	71
257	Cortico-cortical communication dynamics. <i>Frontiers in Systems Neuroscience</i> , 2014 , 8, 19	3.5	20
256	Tracing evolution of spatio-temporal dynamics of the cerebral cortex: cortico-cortical communication dynamics. <i>Frontiers in Systems Neuroscience</i> , 2014 , 8, 76	3.5	4
255	The influence of spatiotemporal structure of noisy stimuli in decision making. <i>PLoS Computational Biology</i> , 2014 , 10, e1003492	5	11
254	Structure-function discrepancy: inhomogeneity and delays in synchronized neural networks. <i>PLoS Computational Biology</i> , 2014 , 10, e1003736	5	26
253	'If you are good, I get better': the role of social hierarchy in perceptual decision-making. <i>Social Cognitive and Affective Neuroscience</i> , 2014 , 9, 1489-97	4	17
252	Great expectations: using whole-brain computational connectomics for understanding neuropsychiatric disorders. <i>Neuron</i> , 2014 , 84, 892-905	13.9	237
251	Modeling Alpha-Band Functional Connectivity for MEG Resting State Data: Oscillations and Delays in a Spiking Neuron Model. <i>BMC Neuroscience</i> , 2013 , 14,	3.2	78
250	Disrupted connectivity in schizophrenia: modelling the impact of structural connectivity changes on the dynamics of spontaneous functional networks. <i>BMC Neuroscience</i> , 2013 , 14,	3.2	1
249	A model of perceptual discrimination under sequential sensory evidence. <i>BMC Neuroscience</i> , 2013 , 14,	3.2	78
248	The effects of time delays on synchronization properties in a network of neural mass models. <i>BMC Neuroscience</i> , 2013 , 14,	3.2	78
247	Variability and information content in auditory cortex spike trains during an interval-discrimination task. <i>Journal of Neurophysiology</i> , 2013 , 110, 2163-74	3.2	8
246	Brain mechanisms for perceptual and reward-related decision-making. <i>Progress in Neurobiology</i> , 2013 , 103, 194-213	10.9	106
245	Resting brains never rest: computational insights into potential cognitive architectures. <i>Trends in Neurosciences</i> , 2013 , 36, 268-74	13.3	240
244	Neural variability in premotor cortex is modulated by trial history and predicts behavioral performance. <i>Neuron</i> , 2013 , 78, 249-55	13.9	62
243	Bottom up modeling of the connectome: linking structure and function in the resting brain and their changes in aging. <i>NeuroImage</i> , 2013 , 80, 318-29	7.9	56

(2012-2013)

242	Spontaneous brain activity predicts learning ability of foreign sounds. <i>Journal of Neuroscience</i> , 2013 , 33, 9295-305	6.6	70	
241	Resting-state functional connectivity emerges from structurally and dynamically shaped slow linear fluctuations. <i>Journal of Neuroscience</i> , 2013 , 33, 11239-52	6.6	333	
240	Coherent delta-band oscillations between cortical areas correlate with decision making. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 15085-90	11.5	95	
239	Structural connectivity in schizophrenia and its impact on the dynamics of spontaneous functional networks. <i>Chaos</i> , 2013 , 23, 046111	3.3	43	
238	Stimulus-dependent variability and noise correlations in cortical MT neurons. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2013 , 110, 13162-7	11.5	81	
237	A common neurodynamical mechanism could mediate externally induced and intrinsically generated transitions in visual awareness. <i>PLoS ONE</i> , 2013 , 8, e53833	3.7	7	
236	Complexity reduction of rate-equations models for two-choice decision-making. PLoS ONE, 2013, 8, e80	08 2/ 0	2	
235	Multi-stable perception balances stability and sensitivity. <i>Frontiers in Computational Neuroscience</i> , 2013 , 7, 17	3.5	34	
234	Holding multiple items in short term memory: a neural mechanism. PLoS ONE, 2013, 8, e61078	3.7	32	
233	Network bursting dynamics in excitatory cortical neuron cultures results from the combination of different adaptive mechanisms. <i>PLoS ONE</i> , 2013 , 8, e75824	3.7	21	
232	Communication before coherence. European Journal of Neuroscience, 2012, 36, 2689-709	3.5	16	
231	Neuronal discharges and gamma oscillations explicitly reflect visual consciousness in the lateral prefrontal cortex. <i>Neuron</i> , 2012 , 74, 924-35	13.9	152	
230	Neuronal Discharges and Gamma Oscillations Explicitly Reflect Visual Consciousness in the Lateral Prefrontal Cortex. <i>Neuron</i> , 2012 , 74, 1139	13.9	3	
229	Theory and simulation in neuroscience. <i>Science</i> , 2012 , 338, 60-5	33.3	103	
228	Structural connectivity allows for multi-threading during rest: the structure of the cortex leads to efficient alternation between resting state exploratory behavior and default mode processing. <i>NeuroImage</i> , 2012 , 60, 2274-84	7.9	26	
227	Modeling the outcome of structural disconnection on resting-state functional connectivity. <i>NeuroImage</i> , 2012 , 62, 1342-53	7.9	123	
226	Balanced input allows optimal encoding in a stochastic binary neural network model: an analytical study. <i>PLoS ONE</i> , 2012 , 7, e30723	3.7	3	
225	A multiple-choice task with changes of mind. <i>PLoS ONE</i> , 2012 , 7, e43131	3.7	16	

224	Perception and self-organized instability. Frontiers in Computational Neuroscience, 2012, 6, 44	3.5	98
223	Synaptic depression and slow oscillatory activity in a biophysical network model of the cerebral cortex. <i>Frontiers in Computational Neuroscience</i> , 2012 , 6, 64	3.5	20
222	How anatomy shapes dynamics: a semi-analytical study of the brain at rest by a simple spin model. <i>Frontiers in Computational Neuroscience</i> , 2012 , 6, 68	3.5	92
221	Neural network mechanisms underlying stimulus driven variability reduction. <i>PLoS Computational Biology</i> , 2012 , 8, e1002395	5	77
220	Ongoing cortical activity at rest: criticality, multistability, and ghost attractors. <i>Journal of Neuroscience</i> , 2012 , 32, 3366-75	6.6	431
219	Functional graph alterations in schizophrenia: a result from a global anatomic decoupling?. <i>Pharmacopsychiatry</i> , 2012 , 45 Suppl 1, S57-64	2	23
218	Learning selective top-down control enhances performance in a visual categorization task. <i>Journal of Neurophysiology</i> , 2012 , 108, 3124-37	3.2	6
217	Effective visual working memory capacity: an emergent effect from the neural dynamics in an attractor network. <i>PLoS ONE</i> , 2012 , 7, e42719	3.7	20
216	Role of local network oscillations in resting-state functional connectivity. <i>NeuroImage</i> , 2011 , 57, 130-13	39 7.9	338
215	The dynamical balance of the brain at rest. <i>Neuroscientist</i> , 2011 , 17, 107-23	7.6	223
215	The dynamical balance of the brain at rest. <i>Neuroscientist</i> , 2011 , 17, 107-23 Emerging concepts for the dynamical organization of resting-state activity in the brain. <i>Nature Reviews Neuroscience</i> , 2011 , 12, 43-56	7.6	223
	Emerging concepts for the dynamical organization of resting-state activity in the brain. <i>Nature</i>	,	
214	Emerging concepts for the dynamical organization of resting-state activity in the brain. <i>Nature Reviews Neuroscience</i> , 2011 , 12, 43-56 The timing of vision - how neural processing links to different temporal dynamics. <i>Frontiers in</i>	13.5	1120
214	Emerging concepts for the dynamical organization of resting-state activity in the brain. <i>Nature Reviews Neuroscience</i> , 2011 , 12, 43-56 The timing of vision - how neural processing links to different temporal dynamics. <i>Frontiers in Psychology</i> , 2011 , 2, 151 Cortical microcircuit dynamics mediating binocular rivalry: the role of adaptation in inhibition.	13.5 3.4	1120 7
214 213 212	Emerging concepts for the dynamical organization of resting-state activity in the brain. <i>Nature Reviews Neuroscience</i> , 2011 , 12, 43-56 The timing of vision - how neural processing links to different temporal dynamics. <i>Frontiers in Psychology</i> , 2011 , 2, 151 Cortical microcircuit dynamics mediating binocular rivalry: the role of adaptation in inhibition. <i>Frontiers in Human Neuroscience</i> , 2011 , 5, 145 Prediction of Decisions from Noise in the Brain before the Evidence is Provided. <i>Frontiers in</i>	13.5 3.4 3.3	1120 7 15
214 213 212 211	Emerging concepts for the dynamical organization of resting-state activity in the brain. <i>Nature Reviews Neuroscience</i> , 2011 , 12, 43-56 The timing of vision - how neural processing links to different temporal dynamics. <i>Frontiers in Psychology</i> , 2011 , 2, 151 Cortical microcircuit dynamics mediating binocular rivalry: the role of adaptation in inhibition. <i>Frontiers in Human Neuroscience</i> , 2011 , 5, 145 Prediction of Decisions from Noise in the Brain before the Evidence is Provided. <i>Frontiers in Neuroscience</i> , 2011 , 5, 33 Slow Modulation of Ongoing Discharge in the Auditory Cortex during an Interval-Discrimination	13.5 3.4 3.3 5.1	1120 7 15 23
214 213 212 211 210	Emerging concepts for the dynamical organization of resting-state activity in the brain. <i>Nature Reviews Neuroscience</i> , 2011 , 12, 43-56 The timing of vision - how neural processing links to different temporal dynamics. <i>Frontiers in Psychology</i> , 2011 , 2, 151 Cortical microcircuit dynamics mediating binocular rivalry: the role of adaptation in inhibition. <i>Frontiers in Human Neuroscience</i> , 2011 , 5, 145 Prediction of Decisions from Noise in the Brain before the Evidence is Provided. <i>Frontiers in Neuroscience</i> , 2011 , 5, 33 Slow Modulation of Ongoing Discharge in the Auditory Cortex during an Interval-Discrimination Task. <i>Frontiers in Integrative Neuroscience</i> , 2011 , 5, 60 Bridging the gap between physiology and behavior: evidence from the sSoTS model of human	13.5 3.4 3.3 5.1	1120 7 15 23 8

206	Computational mechanism of postponed decisions. <i>BMC Neuroscience</i> , 2011 , 12,	3.2	78
205	Simulated functional networks in health and schizophrenia: a graph theoretical approach. <i>BMC Neuroscience</i> , 2011 , 12,	3.2	2
204	Neurodynamical model of confidence decision-making in LIP. BMC Neuroscience, 2011, 12,	3.2	78
203	A computational neuroscience approach to schizophrenia and its onset. <i>Neuroscience and Biobehavioral Reviews</i> , 2011 , 35, 1644-53	9	45
202	The role of rhythmic neural synchronization in rest and task conditions. <i>Frontiers in Human Neuroscience</i> , 2011 , 5, 4	3.3	28
201	Neuronal adaptation effects in decision making. <i>Journal of Neuroscience</i> , 2011 , 31, 234-46	6.6	23
200	Neural and computational mechanisms of postponed decisions. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2011 , 108, 11626-31	11.5	15
199	Changes of mind in an attractor network of decision-making. <i>PLoS Computational Biology</i> , 2011 , 7, e100	02;086	44
198	Noise in attractor networks in the brain produced by graded firing rate representations. <i>PLoS ONE</i> , 2011 , 6, e23630	3.7	13
197	Local Cortical Dynamics Related to Mental Illnesses 2010 , 321-339		
196	Confidence-related decision making. <i>Journal of Neurophysiology</i> , 2010 , 104, 539-47	3.2	60
195	Synaptic dynamics and decision making. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2010 , 107, 7545-9	11.5	57
194	Decision-making, errors, and confidence in the brain. <i>Journal of Neurophysiology</i> , 2010 , 104, 2359-74	3.2	87
194	Decision-making, errors, and confidence in the brain. <i>Journal of Neurophysiology</i> , 2010 , 104, 2359-74 Optimal information transfer in the cortex through synchronization. <i>PLoS Computational Biology</i> , 2010 , 6, e1000934	3.2 5	107
	Optimal information transfer in the cortex through synchronization. <i>PLoS Computational Biology</i> ,		·
193	Optimal information transfer in the cortex through synchronization. <i>PLoS Computational Biology</i> , 2010 , 6, e1000934 Audiovisual matching in speech and nonspeech sounds: a neurodynamical model. <i>Journal of</i>	5	107
193	Optimal information transfer in the cortex through synchronization. <i>PLoS Computational Biology</i> , 2010 , 6, e1000934 Audiovisual matching in speech and nonspeech sounds: a neurodynamical model. <i>Journal of Cognitive Neuroscience</i> , 2010 , 22, 240-7	5	107

188	Key role of coupling, delay, and noise in resting brain fluctuations. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2009 , 106, 10302-7	11.5	508
187	Lexical plasticity in early bilinguals does not alter phoneme categories: II. Experimental evidence. <i>Journal of Cognitive Neuroscience</i> , 2009 , 21, 2343-57	3.1	23
186	RATE AND GAMMA MODULATION IN ATTENTIONAL TASKS. <i>New Mathematics and Natural Computation</i> , 2009 , 05, 135-142	0.6	
185	Correction for Deco et al., Key role of coupling, delay, and noise in resting brain fluctuations. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2009 , 106, 12207-12208	11.5	12
184	Effective reduced diffusion-models: a data driven approach to the analysis of neuronal dynamics. <i>PLoS Computational Biology</i> , 2009 , 5, e1000587	5	38
183	The encoding of alternatives in multiple-choice decision making. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2009 , 106, 10308-13	11.5	57
182	Attention: oscillations and neuropharmacology. European Journal of Neuroscience, 2009, 30, 347-54	3.5	66
181	Multisensory contributions to the perception of vibrotactile events. <i>Behavioural Brain Research</i> , 2009 , 196, 145-54	3.4	51
180	Stochastic dynamics as a principle of brain function. <i>Progress in Neurobiology</i> , 2009 , 88, 1-16	10.9	200
179	Stochastic Neural Dynamics as a Principle of Perception 2009 , 247-262		2
178	Simulating posterior parietal damage in a biologically plausible framework: neuropsychological tests of the search over time and space model. <i>Cognitive Neuropsychology</i> , 2009 , 26, 343-90	2.3	9
177	Oscillations, phase-of-firing coding, and spike timing-dependent plasticity: an efficient learning scheme. <i>Journal of Neuroscience</i> , 2009 , 29, 13484-93	6.6	119
176	Stochastic Dynamics in the Brain and Probabilistic Decision-Making. <i>Lecture Notes in Computer Science</i> , 2009 , 31-50	0.9	1
175	Computational models of schizophrenia and dopamine modulation in the prefrontal cortex. <i>Nature Reviews Neuroscience</i> , 2008 , 9, 696-709	13.5	273
174	Computational significance of transient dynamics in cortical networks. <i>European Journal of Neuroscience</i> , 2008 , 27, 790-790	3.5	О
173	An attractor hypothesis of obsessive-compulsive disorder. <i>European Journal of Neuroscience</i> , 2008 , 28, 782-93	3.5	57
172	The role of fluctuations in perception. <i>Trends in Neurosciences</i> , 2008 , 31, 591-8	13.3	38
171	The neuronal basis of attention: rate versus synchronization modulation. <i>Journal of Neuroscience</i> , 2008 , 28, 7679-86	6.6	61

(2007-2008)

The dynamic brain: from spiking neurons to neural masses and cortical fields. <i>PLoS Computational Biology</i> , 2008 , 4, e1000092	5	634
Lexical plasticity in early bilinguals does not alter phoneme categories: I. Neurodynamical modeling. <i>Journal of Cognitive Neuroscience</i> , 2008 , 20, 76-94	3.1	8
Neurodynamics of the prefrontal cortex during conditional visuomotor associations. <i>Journal of Cognitive Neuroscience</i> , 2008 , 20, 421-31	3.1	10
Neuronal and Cortical Dynamical Mechanisms Underlying Brain Functions 2008 , 219-240		
A fluctuation-driven mechanism for slow decision processes in reverberant networks. <i>PLoS ONE</i> , 2008 , 3, e2534	3.7	37
Computational significance of transient dynamics in cortical networks. <i>European Journal of Neuroscience</i> , 2008 , 27, 217-27	3.5	62
Neurodynamical amplification of perceptual signals via system-size resonance. <i>Physica D: Nonlinear Phenomena</i> , 2008 , 237, 316-323	3.3	6
Neural Mechanisms of Visual Memory: A Neurocomputational Perspective 2008 , 247-290		2
The symptoms of schizophrenia related to the stability of attractor networks. <i>BMC Neuroscience</i> , 2007 , 8,	3.2	78
Interactions between higher and lower visual areas improve shape selectivity of higher level neurons-explaining crowding phenomena. <i>Brain Research</i> , 2007 , 1157, 167-76	3.7	44
Suppressive effects in visual search: A neurocomputational analysis of preview search. <i>Neurocomputing</i> , 2007 , 70, 1925-1931	5.4	6
The neuronal dynamics underlying cognitive flexibility in set shifting tasks. <i>Journal of Computational Neuroscience</i> , 2007 , 23, 313-31	1.4	26
Deterministic analysis of stochastic bifurcations in multi-stable neurodynamical systems. <i>Biological Cybernetics</i> , 2007 , 96, 487-96	2.8	21
The neurodynamics underlying attentional control in set shifting tasks. <i>Cognitive Neurodynamics</i> , 2007 , 1, 249-59	4.2	8
Weber's law in decision making: integrating behavioral data in humans with a neurophysiological model. <i>Journal of Neuroscience</i> , 2007 , 27, 11192-200	6.6	56
A dynamical systems hypothesis of schizophrenia. <i>PLoS Computational Biology</i> , 2007 , 3, e228	5	112
Statistical Fluctuations in Attractor Networks Related to Schizophrenia. <i>Pharmacopsychiatry</i> , 2007 , 40, S78-S84	2	18
Extended method of moments for deterministic analysis of stochastic multistable neurodynamical systems. <i>Physical Review E</i> , 2007 , 75, 031913	2.4	12
	Lexical plasticity in early bilinguals does not alter phoneme categories: I. Neurodynamical modeling. <i>Journal of Cognitive Neuroscience</i> , 2008, 20, 76-94 Neurodynamics of the prefrontal cortex during conditional visuomotor associations. <i>Journal of Cognitive Neuroscience</i> , 2008, 20, 421-31 Neuronal and Cortical Dynamical Mechanisms Underlying Brain Functions 2008, 219-240 A fluctuation-driven mechanism for slow decision processes in reverberant networks. <i>PLoS ONE</i> , 2008, 3, e2534 Computational significance of transient dynamics in cortical networks. <i>European Journal of Neuroscience</i> , 2008, 27, 217-27 Neurodynamical amplification of perceptual signals via system-size resonance. <i>Physica D: Nonlinear Phenomena</i> , 2008, 237, 316-323 Neural Mechanisms of Visual Memory: A Neurocomputational Perspective 2008, 247-290 The symptoms of schizophrenia related to the stability of attractor networks. <i>BMC Neuroscience</i> , 2007, 8, Interactions between higher and lower visual areas improve shape selectivity of higher level neurons-explaining crowding phenomena. <i>Brain Research</i> , 2007, 1157, 167-76 Suppressive effects in visual search: A neurocomputational analysis of preview search. <i>Neurocomputing</i> , 2007, 70, 1925-1931 The neuronal dynamics underlying cognitive flexibility in set shifting tasks. <i>Journal of Computational Neuroscience</i> , 2007, 23, 313-31 Deterministic analysis of stochastic bifurcations in multi-stable neurodynamical systems. <i>Biological Cybernetics</i> , 2007, 96, 487-96 The neurodynamics underlying attentional control in set shifting tasks. <i>Cognitive Neurodynamics</i> , 2007, 1, 249-59 Weber's law in decision making: integrating behavioral data in humans with a neurophysiological model. <i>Journal of Neuroscience</i> , 2007, 27, 11192-200 A dynamical systems hypothesis of schizophrenia. <i>PLoS Computational Biology</i> , 2007, 3, e228 Statistical Fluctuations in Attractor Networks Related to Schizophrenia. <i>Pharmacopsychiatry</i> , 2007, 40, 578-584	Lexical plasticity in early bilinguals does not alter phoneme categories: I. Neurodynamical modeling. <i>Journal of Cognitive Neuroscience</i> , 2008, 20, 76-94 Neurodynamics of the prefrontal cortex during conditional visuomotor associations. <i>Journal of Cognitive Neuroscience</i> , 2008, 20, 421-31 Neuronal and Cortical Dynamical Mechanisms Underlying Brain Functions 2008, 219-240 A fluctuation-driven mechanism for slow decision processes in reverberant networks. <i>PLoS ONE</i> , 2008, 3, e2534 Computational significance of transient dynamics in cortical networks. <i>European Journal of Neuroscience</i> , 2008, 27, 217-27 Neurodynamical amplification of perceptual signals via system-size resonance. <i>Physica D: Nonlinear Phenomena</i> , 2008, 237, 316-323 Neural Mechanisms of Visual Memory: A Neurocomputational Perspective 2008, 247-290 The symptoms of schizophrenia related to the stability of attractor networks. <i>BMC Neuroscience</i> , 2007, 8, 2007, 8, 100, 1925-1931 The neurons-explaining crowding phenomena. <i>Brain Research</i> , 2007, 1157, 167-76 Suppressive effects in visual search: A neurocomputational analysis of preview search. <i>Neurocomputing</i> , 2007, 70, 1925-1931 The neuronal dynamics underlying cognitive flexibility in set shifting tasks. <i>Journal of Computational Neuroscience</i> , 2007, 23, 313-31 Deterministic analysis of stochastic bifurcations in multi-stable neurodynamical systems. <i>Biological Cybernetics</i> , 2007, 96, 487-96 The neurodynamics underlying attentional control in set shifting tasks. <i>Cognitive Neurodynamics</i> , 42 Weber's law in decision making: integrating behavioral data in humans with a neurophysiological model. <i>Journal of Neuroscience</i> , 2007, 27, 11192-200 A dynamical systems hypothesis of schizophrenia. <i>PLoS Computational Biology</i> , 2007, 3, e228 Statistical Fluctuations in Attractor Networks Related to Schizophrenia. <i>Pharmacopsychiatry</i> , 2007, 40, 578-584

152	Perceptual detection as a dynamical bistability phenomenon: a neurocomputational correlate of sensation. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2007 , 104, 20073-7	11.5	32
151	Attention and spatial resolution: a theoretical and experimental study of visual search in hierarchical patterns. <i>Perception</i> , 2007 , 36, 335-54	1.2	11
150	Biased Competition and Cooperation: A Mechanism of Mammalian Visual Recognition? 2007 , 187-203		
149	The Spiking Search over Time and Space Model (sSoTS): Simulating Dual Task Experiments and the Temporal Dynamics of Preview Search. <i>Lecture Notes in Computer Science</i> , 2007 , 338-351	0.9	
148	Computational Neuroscience and Cognitive Brain Functions 2007 , 153-167		
147	A computational model of visual marking using an inter-connected network of spiking neurons: the spiking search over time & space model (sSoTS). <i>Journal of Physiology (Paris)</i> , 2006 , 100, 110-24		14
146	Reward-biased probabilistic decision-making: Mean-field predictions and spiking simulations. <i>Neurocomputing</i> , 2006 , 69, 1175-1178	5.4	5
145	Neurodynamical approach to the picture word interference effect. <i>Neurocomputing</i> , 2006 , 69, 1317-132	15.4	1
144	Detecting event-related time-dependent directional couplings. New Journal of Physics, 2006, 8, 6-6	2.9	27
143	The neurodynamics of visual search. Visual Cognition, 2006, 14, 1006-1024	1.8	12
143	The neurodynamics of visual search. <i>Visual Cognition</i> , 2006 , 14, 1006-1024 Decision-making and Weber's law: a neurophysiological model. <i>European Journal of Neuroscience</i> , 2006 , 24, 901-16	1.8 3.5	12
	Decision-making and Weber's law: a neurophysiological model. <i>European Journal of Neuroscience</i> ,		
142	Decision-making and Weber's law: a neurophysiological model. <i>European Journal of Neuroscience</i> , 2006 , 24, 901-16 Attention in natural scenes: Neurophysiological and computational bases. <i>Neural Networks</i> , 2006 ,	3.5	128
142	Decision-making and Weber's law: a neurophysiological model. <i>European Journal of Neuroscience</i> , 2006 , 24, 901-16 Attention in natural scenes: Neurophysiological and computational bases. <i>Neural Networks</i> , 2006 , 19, 1383-94 Learning to attend: modeling the shaping of selectivity in infero-temporal cortex in a	3.5 9.1	128
142 141 140	Decision-making and Weber's law: a neurophysiological model. <i>European Journal of Neuroscience</i> , 2006 , 24, 901-16 Attention in natural scenes: Neurophysiological and computational bases. <i>Neural Networks</i> , 2006 , 19, 1383-94 Learning to attend: modeling the shaping of selectivity in infero-temporal cortex in a categorization task. <i>Biological Cybernetics</i> , 2006 , 94, 351-65 Neurons and the synaptic basis of the fMRI signal associated with cognitive flexibility. <i>NeuroImage</i> ,	3.5 9.1 2.8	128 31 20
142 141 140	Decision-making and Weber's law: a neurophysiological model. <i>European Journal of Neuroscience</i> , 2006 , 24, 901-16 Attention in natural scenes: Neurophysiological and computational bases. <i>Neural Networks</i> , 2006 , 19, 1383-94 Learning to attend: modeling the shaping of selectivity in infero-temporal cortex in a categorization task. <i>Biological Cybernetics</i> , 2006 , 94, 351-65 Neurons and the synaptic basis of the fMRI signal associated with cognitive flexibility. <i>NeuroImage</i> , 2005 , 26, 454-70 Attention, short-term memory, and action selection: a unifying theory. <i>Progress in Neurobiology</i> ,	3.5 9.1 2.8	128 31 20 25
142 141 140 139	Decision-making and Weber's law: a neurophysiological model. <i>European Journal of Neuroscience</i> , 2006 , 24, 901-16 Attention in natural scenes: Neurophysiological and computational bases. <i>Neural Networks</i> , 2006 , 19, 1383-94 Learning to attend: modeling the shaping of selectivity in infero-temporal cortex in a categorization task. <i>Biological Cybernetics</i> , 2006 , 94, 351-65 Neurons and the synaptic basis of the fMRI signal associated with cognitive flexibility. <i>NeuroImage</i> , 2005 , 26, 454-70 Attention, short-term memory, and action selection: a unifying theory. <i>Progress in Neurobiology</i> , 2005 , 76, 236-56 Synaptic and spiking dynamics underlying reward reversal in the orbitofrontal cortex. <i>Cerebral</i>	3.5 9.1 2.8 7.9	128 31 20 25 241

(2002-2005)

134	Neurodynamics of biased competition and cooperation for attention: a model with spiking neurons. <i>Journal of Neurophysiology</i> , 2005 , 94, 295-313	3.2	182
133	Sequential memory: a putative neural and synaptic dynamical mechanism. <i>Journal of Cognitive Neuroscience</i> , 2005 , 17, 294-307	3.1	45
132	The Computational Neuroscience of Visual Cognition: Attention, Memory and Reward. <i>Lecture Notes in Computer Science</i> , 2005 , 100-117	0.9	4
131	A Neurodynamical Model of Visual Attention 2005 , 593-599		5
130	The Role of Short-Term Memory in Visual Attention 2005 , 610-617		4
129	"What" and "where" in visual working memory: a computational neurodynamical perspective for integrating FMRI and single-neuron data. <i>Journal of Cognitive Neuroscience</i> , 2004 , 16, 683-701	3.1	103
128	Cooperation and biased competition model can explain attentional filtering in the prefrontal cortex. <i>European Journal of Neuroscience</i> , 2004 , 19, 1969-77	3.5	24
127	The role of early visual cortex in visual integration: a neural model of recurrent interaction. <i>European Journal of Neuroscience</i> , 2004 , 20, 1089-100	3.5	54
126	Modular biased-competition and cooperation: a candidate mechanism for selective working memory. <i>European Journal of Neuroscience</i> , 2004 , 20, 2789-803	3.5	8
125	Integrating fMRI and single-cell data of visual working memory. <i>Neurocomputing</i> , 2004 , 58-60, 729-737	5.4	7
124	A biased competition based neurodynamical model of visual neglect. <i>Medical Engineering and Physics</i> , 2004 , 26, 733-43	2.4	19
123	A neurodynamical cortical model of visual attention and invariant object recognition. <i>Vision Research</i> , 2004 , 44, 621-42	2.1	225
122	Feature-based attention in human visual cortex: simulation of fMRI data. NeuroImage, 2004, 21, 36-45	7.9	26
121	Systems-Level Neuronal Modeling of Visual Attentional Mechanisms. <i>Artificial Intelligence Review</i> , 2003 , 20, 143-160	9.7	3
120	Large-Scale Computational Modeling of Genetic Regulatory Networks. <i>Artificial Intelligence Review</i> , 2003 , 20, 75-93	9.7	12
119	Attention and working memory: a dynamical model of neuronal activity in the prefrontal cortex. <i>European Journal of Neuroscience</i> , 2003 , 18, 2374-90	3.5	155
118	A model of binocular rivalry based on competition in IT. Neurocomputing, 2002, 44-46, 503-507	5.4	28
117	A neurodynamical model to simulate neural activities in visual attention experiments. <i>Neurocomputing</i> , 2002 , 44-46, 759-767	5.4	0

116	A unified model of spatial and object attention based on inter-cortical biased competition. <i>Neurocomputing</i> , 2002 , 44-46, 775-781	5.4	42
115	A computational neuroscience account of visual neglect. <i>Neurocomputing</i> , 2002 , 44-46, 811-816	5.4	11
114	Speech recognition with spiking neurons and dynamic synapses: a model motivated by the human auditory pathway. <i>Neurocomputing</i> , 2002 , 44-46, 937-942	5.4	8
113	Object-based visual neglect: a computational hypothesis. <i>European Journal of Neuroscience</i> , 2002 , 16, 1994-2000	3.5	31
112	Large-scale neural model for visual attention: integration of experimental single-cell and fMRI data. <i>Cerebral Cortex</i> , 2002 , 12, 339-48	5.1	82
111	The time course of selective visual attention: theory and experiments. Vision Research, 2002, 42, 2925-4	15 2.1	65
110	A Neurodynamical Theory of Visual Attention: Comparisons with fMRI- and Single-Neuron Data. <i>Lecture Notes in Computer Science</i> , 2002 , 3-8	0.9	2
109	Temporal clustering with spiking neurons and dynamic synapses: towards technological applications. <i>Neural Networks</i> , 2001 , 14, 275-85	9.1	9
108	A neurodynamical model for selective visual attention using oscillators. <i>Neural Networks</i> , 2001 , 14, 981	-90 1	28
107	Investigating the underlying Markovian dynamics of ECG rhythms by information flow. <i>Chaos, Solitons and Fractals,</i> 2001 , 12, 2877-2888	9.3	2
106	A neurodynamical model of visual attention: feedback enhancement of spatial resolution in a hierarchical system. <i>Journal of Computational Neuroscience</i> , 2001 , 10, 231-53	1.4	35
105	Predictive Coding in the Visual Cortex by a Recurrent Network with Gabor Receptive Fields. <i>Neural Processing Letters</i> , 2001 , 14, 107-114	2.4	2
104	Learning spatio-temporal stimuli with networks of spiking neurons and dynamic synapses. <i>Neurocomputing</i> , 2001 , 38-40, 935-943	5.4	0
103	Selective attention in visual search: A neural network of phase oscillators. <i>Neurocomputing</i> , 2001 , 38-40, 1151-1160	5.4	1
102	Top-down selective visual attention: A neurodynamical approach. Visual Cognition, 2001, 8, 118-139	1.8	58
101	Simultaneous Parallel Processing of Object and Position by Temporal Correlation. <i>Lecture Notes in Computer Science</i> , 2001 , 64-71	0.9	
100	Computational Neuroscience of Vision 2001,		52
99	Biased Competition Mechanisms for Visual Attention in a Multimodular Neurodynamical System. <i>Lecture Notes in Computer Science</i> , 2001 , 114-126	0.9	9

(1997-2000)

98	A neuro-cognitive visual system for object recognition based on testing of interactive attentional top-down hypotheses. <i>Perception</i> , 2000 , 29, 1249-64	1.2	17
97	Neurodynamical mechanism of binding and selective attention for visual search. <i>Neurocomputing</i> , 2000 , 32-33, 693-699	5.4	4
96	Neural coding: higher-order temporal patterns in the neurostatistics of cell assemblies. <i>Neural Computation</i> , 2000 , 12, 2621-53	2.9	109
95	A hierarchical neural system with attentional top-down enhancement of the spatial resolution for object recognition. <i>Vision Research</i> , 2000 , 40, 2845-59	2.1	61
94	Rest EEG Hidden Dynamics as a Discriminant for Brain Tumour Classification. <i>Perspectives in Neural Computing</i> , 2000 , 169-180		
93	Brain tumor classification based on EEG hidden dynamics. <i>Intelligent Data Analysis</i> , 1999 , 3, 287-306	1.1	9
92	Spatiotemporal coding in the cortex: information flow-based learning in spiking neural networks. <i>Neural Computation</i> , 1999 , 11, 919-34	2.9	9
91	Brain tumor classification based on EEG hidden dynamics. <i>Intelligent Data Analysis</i> , 1999 , 3, 287-306	1.1	9
90	A characterization of HRV's nonlinear hidden dynamics by means of Markov models. <i>IEEE Transactions on Biomedical Engineering</i> , 1999 , 46, 978-86	5	20
89	A Neuronal Model of Binding and Selective Attention for Visual Search. <i>Perspectives in Neural Computing</i> , 1999 , 262-271		2
88	Dynamics extraction in multivariate biomedical time series. <i>Biological Cybernetics</i> , 1998 , 79, 15-27	2.8	25
87	Stochastic resonance in the mutual information between input and output spike trains of noisy central neurons. <i>Physica D: Nonlinear Phenomena</i> , 1998 , 117, 276-282	3.3	33
86	Information maximization and independent component analysis; is there a difference?. <i>Neural Computation</i> , 1998 , 10, 2085-101	2.9	22
85	The coding of information by spiking neurons: an analytical study. <i>Network: Computation in Neural Systems</i> , 1998 , 9, 303-317	0.7	8
84	The coding of information by spiking neurons: an analytical study. <i>Network: Computation in Neural Systems</i> , 1998 , 9, 303-317	0.7	2
83	Information dynamics and neural techniques for data analysis. <i>Neural Network Systems Techniques and Applications</i> , 1998 , 305-351		
82	Dynamical Analysis of Time Series by Statistical Tests. <i>International Journal of Bifurcation and Chaos in Applied Sciences and Engineering</i> , 1997 , 07, 2629-2652	2	3
81	Determining the Information Flow of Dynamical Systems from Continuous Probability Distributions. <i>Physical Review Letters</i> , 1997 , 78, 2345-2348	7.4	8

80	Information Transmission and Temporal Code in Central Spiking Neurons. <i>Physical Review Letters</i> , 1997 , 79, 4697-4700	7.4	13
79	Information Flow in Chaotic Symbolic Dynamics for Finite and Infinitesimal Resolution. <i>International Journal of Bifurcation and Chaos in Applied Sciences and Engineering</i> , 1997 , 07, 97-105	2	3
78	A nonlinear markovian characterization of time series using neural networks. <i>Lecture Notes in Computer Science</i> , 1997 , 481-488	0.9	
77	Testing nonlinear Markovian hypotheses in dynamical systems. <i>Physica D: Nonlinear Phenomena</i> , 1997 , 104, 61-74	3.3	8
76	Two Strategies to Avoid Overfitting in Feedforward Networks. <i>Neural Networks</i> , 1997 , 10, 505-516	9.1	90
75	Non-parametric Data Selection for Neural Learning in Non-stationary Time Series. <i>Neural Networks</i> , 1997 , 10, 401-407	9.1	12
74	Nonlinear independent component analysis and multivariate time series analysis. <i>Physica D: Nonlinear Phenomena</i> , 1997 , 108, 335-349	3.3	8
73	Identification of deterministic chaos by an information-theoretic measure of the sensitive dependence on the initial conditions. <i>Physica D: Nonlinear Phenomena</i> , 1997 , 110, 173-181	3.3	6
72	Finite automata-models for the investigation of dynamical systems. <i>Information Processing Letters</i> , 1997 , 63, 137-141	0.8	10
71	Statistical Independence and Novelty Detection with Information Preserving Nonlinear Maps. <i>Neural Computation</i> , 1996 , 8, 260-269	2.9	93
70	An information theory based learning paradigm for linear feature extraction. <i>Neurocomputing</i> , 1996 , 12, 203-221	5.4	4
69	Exploring the intrinsic information loss in single-humped maps by refining multi-symbol partitions. <i>Physica D: Nonlinear Phenomena</i> , 1996 , 94, 57-64	3.3	16
68	Information Theory Based Regularizing Methods. Perspectives in Neural Computing, 1996, 225-241		
67	Nonlinear Feature Extraction: Deterministic Neural Networks. <i>Perspectives in Neural Computing</i> , 1996 , 135-166		
66	Statistical Physics Theory of Supervised Learning and Generalization. <i>Perspectives in Neural Computing</i> , 1996 , 187-217		
65	Nonparametric data selection for improvement of parametric neural learning: A cumulant-surrogate method. <i>Lecture Notes in Computer Science</i> , 1996 , 121-126	0.9	
64	Preliminaries of Information Theory and Neural Networks. <i>Perspectives in Neural Computing</i> , 1996 , 7-37	,	
63	An Information-Theoretic Approach to Neural Computing. Perspectives in Neural Computing, 1996,		109

62	Neural learning of chaotic dynamics. Neural Processing Letters, 1995, 2, 23-26	2.4	8
61	Continuous Boltzmann machine with rotor neurons. <i>Neural Networks</i> , 1995 , 8, 375-385	9.1	5
60	Statistical physics theory of query learning by an ensemble of higher-order neural networks. <i>Physical Review E</i> , 1995 , 52, 1953-1957	2.4	1
59	Learning time series evolution by unsupervised extraction of correlations. <i>Physical Review E</i> , 1995 , 51, 1780-1790	2.4	13
58	Statistical-ensemble theory of redundancy reduction and the duality between unsupervised and supervised neural learning. <i>Physical Review E</i> , 1995 , 52, 6580-6587	2.4	8
57	Information theory and local learning rules in a self-organizing network of Ising spins. <i>Physical Review E</i> , 1995 , 52, 2860-2871	2.4	1
56	Do Symmetric Eikonal and Continuum Distorted Wave models satisfy the correct boundary conditions?. <i>Physica Scripta</i> , 1995 , 51, 334-338	2.6	2
55	Decorrelated Hebbian Learning for Clustering and Function Approximation. <i>Neural Computation</i> , 1995 , 7, 338-348	2.9	5
54	Unsupervised Mutual Information Criterion for Elimination of Overtraining in Supervised Multilayer Networks. <i>Neural Computation</i> , 1995 , 7, 86-107	2.9	45
53	Nonlinear higher-order statistical decorrelation by volume-conserving neural architectures. <i>Neural Networks</i> , 1995 , 8, 525-535	9.1	76
52	Matrix continuum distorted-wave approximation for electron capture. <i>Physical Review A</i> , 1993 , 47, 376	59- <u>3</u> 774	1 5
51	Coarse Coding Resource-Allocating Network. <i>Neural Computation</i> , 1993 , 5, 105-114	2.9	9
50	Double electron capture of He2+from He at high velocity. <i>Journal of Physics B: Atomic, Molecular and Optical Physics</i> , 1991 , 24, L133-L138	1.3	37
49	Angular distribution of electron-positron pairs produced in ion-ion collisions at relativistic energies. <i>Physics Letters, Section A: General, Atomic and Solid State Physics</i> , 1990 , 143, 387-392	2.3	5
48	K-shell ionisation in heavy ion collisions at relativistic energies. <i>Journal of Physics B: Atomic, Molecular and Optical Physics</i> , 1990 , 23, 2091-2096	1.3	2
47	Two-center effects in relativistic radiative electron capture. <i>Physical Review A</i> , 1989 , 39, 5451-5454	2.6	2
46	Capture from the vacuum in ion-ion collisions at relativistic energies. <i>Journal of Physics B: Atomic, Molecular and Optical Physics</i> , 1989 , 22, 3709-3716	1.3	6
45	Pair production with electron capture in relativistic heavy-ion collisions. <i>Journal of Physics B:</i> Atomic, Molecular and Optical Physics, 1989 , 22, 1043-1050	1.3	12

44	Asymptotic behaviour of distorted-wave models for ionisation at relativistic energies. <i>Journal of Physics B: Atomic, Molecular and Optical Physics</i> , 1989 , 22, 1357-1364	1.3	12
43	Ionization of heavy targets by impact of relativistic projectiles. <i>Nuclear Instruments & Methods in Physics Research B</i> , 1988 , 35, 100-102	1.2	3
42	Introduction of short-range interactions in continuum distorted-wave theory of electron capture for ion-atom collisions. <i>Journal of Physics B: Atomic, Molecular and Optical Physics</i> , 1988 , 21, 1403-1410	1.3	13
41	Electron capture in collisions between bare heavy ions at ultra relativistic impact energies. <i>Journal of Physics B: Atomic, Molecular and Optical Physics</i> , 1988 , 21, 1229-1235	1.3	10
40	Creation of ee+pairs in the target field followed by e-capture in the target. <i>Journal of Physics B: Atomic, Molecular and Optical Physics</i> , 1988 , 21, 1861-1866	1.3	6
39	Electron capture in the target following ee3+pair production in the simultaneous presence of the fields of the projectile and of the target. <i>Journal of Physics B: Atomic, Molecular and Optical Physics</i> , 1988 , 21, L299-L302	1.3	8
38	Computational Modelling in Behavioural Neuroscience		4
37	Unifying turbulent dynamics framework distinguishes different brain states		2
36	Cortical state transitions and stimulus response evolve along stiff and sloppy parameter dimensions, respectively		1
35	Redundancy reduction with information-preserving nonlinear maps		7
34	Unsupervised learning for Boltzman Machines		4
33	The dynamics of resting fluctuations in the brain: metastability and its dynamical cortical core		5
32	Bridging multiple scales in the human brain using computational modelling		4
31	Consistent local dynamics in the brain across sessions are revealed by whole brain modeling of resting state activity		2
30	Propagation of BOLD activity reveals task-dependent directed interactions across human visual cortex		3
29	Extracting orthogonal subject- and behavior-specific signatures from fMRI data using whole-brain effective connectivity		2
28	Identifying optimal working points of individual Virtual Brains: A large-scale brain network modelling study		6
27	Ephaptic coupling in white matter fibre bundles modulates axonal transmission delays		1

26	Perturbations in dynamical models of whole-brain activity dissociate between the level and stability of consciousness	4
25	A cross-species link between mTOR-related synaptic pathology and functional hyperconnectivity in autism	2
24	Dynamical consequences of regional heterogeneity in the brain transcriptional landscape	7
23	Loss of consciousness reduces the stability of brain hubs and the heterogeneity of brain dynamics	4
22	Effective connectivity extracts clinically relevant prognostic information from resting state activity in stroke	1
21	Altered trajectories in the dynamical repertoire of functional network states under psilocybin	4
20	Multiscale dynamic mean field model to relate resting-state brain dynamics with local cortical excitatory-inhibitory neurotransmitter homeostasis in health and disease	1
19	Personalization of hybrid brain models from neuroimaging and electrophysiology data	4
18	Characterizing the Dynamical Complexity underlying Meditation	1
17	Functional harmonics reveal multi-dimensional basis functions underlying cortical organization	4
16	Revisiting the Global Workspace: Orchestration of the functional hierarchical organisation of the human brain	4
15	Effective connectivity inferred from fMRI transition dynamics during movie viewing points to a balanced reconfiguration of cortical interactions	3
14	Connectome-harmonic decomposition of human brain activity reveals dynamical repertoire re-organization under LSD	3
13	Harmonic brain modes: a unifying framework for linking space and time in brain dynamics	2
12	Task-related effective connectivity reveals that the cortical rich club gates cortex-wide communication	1
11	Brain Dynamics at Rest: How Structure Shapes Dynamics233-243	
10	Anatomical and Functional Gradients Shape Dynamic Functional Connectivity in the Human Brain	4
9	LSD flattens the brainඕ energy landscape: evidence from receptor-informed network control theory	6

8	Meditation-induced effects on whole-brain structural and effective connectivity		1
7	Rare long-range cortical connections enhance information processing		3
6	Macroscopic quantities of collective brain activity during wakefulness and anesthesia		1
5	Deep learning the arrow of time in brain activity: characterising brain-environment behavioural interactions in health and disease		3
4	On the edge of criticality: strength-dependent perturbation unveils delicate balance between fluctuation and oscillation in brain dynamics		1
3	Temporal irreversibility of neural dynamics as a signature of consciousness		2
2	Functional network antagonism and consciousness. Network Neuroscience,1-29	5.6	O
1	Effects of classic psychedelic drugs on turbulent signatures in brain dynamics. <i>Network</i> Neuroscience,1-42	5.6	O