Vincent O Nyamori

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6700076/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Current advances in perovskite oxides supported on graphene-based materials as interfacial layers of perovskite solar cells. Critical Reviews in Solid State and Materials Sciences, 2023, 48, 112-131.	12.3	7
2	Synthesis and characterisation of heteroatom-doped reduced graphene oxide/bismuth oxide nanocomposites and their application as photoanodes in DSSCs. RSC Advances, 2022, 12, 2462-2472.	3.6	10
3	A review of graphene derivative enhancers for perovskite solar cells. Nanoscale Advances, 2022, 4, 2057-2076.	4.6	20
4	Simulation of the photovoltaic performance of a perovskite solar cell based on methylammonium lead iodide. Optical and Quantum Electronics, 2022, 54, .	3.3	6
5	Graphitic carbon nitride-based new-generation solar cells: Critical challenges, recent breakthroughs and future prospects. Solar Energy, 2022, 239, 74-87.	6.1	12
6	Metalâ€organic chemical vapor deposition of anatase titania on multiwalled carbon nanotubes for electrochemical capacitors. Energy Science and Engineering, 2022, 10, 3493-3506.	4.0	7
7	A comparative study between thermal etching and liquid exfoliation of bulk graphitic carbon nitride to nanosheets for the photocatalytic degradation of a model environmental pollutant, Rhodamine B. Journal of Materials Science: Materials in Electronics, 2021, 32, 687-706.	2.2	15
8	Hydrothermal synthesis of reduced graphene oxideâ€anatase titania nanocomposites for dual application in organic solar cells. International Journal of Energy Research, 2021, 45, 7293-7314.	4.5	11
9	Organic solar cells: Current perspectives on grapheneâ€based materials for electrodes, electron acceptors and interfacial layers. International Journal of Energy Research, 2021, 45, 6518-6549.	4.5	22
10	A review of the current status of graphitic carbon nitride. Critical Reviews in Solid State and Materials Sciences, 2021, 46, 189-217.	12.3	160
11	Dioxin and dibenzofuran like molecular analogues from the pyrolysis of biomass materials—the emerging challenge in bio-oil production. BMC Chemistry, 2021, 15, 3.	3.8	1
12	A theoretical investigation of the effect of the hole and electron transport materials on the performance of a lead-free perovskite solar cell based on CH3NH3SnI3. Journal of Computational Electronics, 2021, 20, 993-1005.	2.5	22
13	Effects of Ionic Liquid and Biomass Sources on Carbon Nanotube Physical and Electrochemical Properties. Sustainability, 2021, 13, 2977.	3.2	4
14	Design and synthesis of quinoline-pyrimidine inspired hybrids as potential plasmodial inhibitors. European Journal of Medicinal Chemistry, 2021, 217, 113330.	5.5	29
15	Perovskite Solar Cells: Current Trends in Grapheneâ€Based Materials for Transparent Conductive Electrodes, Active Layers, Charge Transport Layers, and Encapsulation Layers. Advanced Energy and Sustainability Research, 2021, 2, 2100050.	5.8	12
16	Surface modifications of carbon nanotubes towards tailored electrochemical characteristics. Journal of Materials Science: Materials in Electronics, 2021, 32, 27923.	2.2	5
17	Multi-dimensional applications of graphitic carbon nitride nanomaterials – A review. Journal of Molecular Liquids, 2021, 344, 117820.	4.9	46
18	Lactate dehydrogenase and malate dehydrogenase: Potential antiparasitic targets for drug development studies. Bioorganic and Medicinal Chemistry, 2021, 50, 116458.	3.0	13

#	Article	IF	CITATIONS
19	Dual heteroatom-doped reduced graphene oxide and its application in dye-sensitized solar cells. Optical Materials, 2021, 122, 111689.	3.6	7
20	Optimization of Hole Transport Layer Materials for a Leadâ€Free Perovskite Solar Cell Based on Formamidinium Tin Iodide. Energy Technology, 2021, 9, 2100859.	3.8	7
21	Recent Applications of Carbon Nanotubes in Organic Solar Cells. Frontiers in Chemistry, 2021, 9, 733552.	3.6	25
22	Organic solar cells: Materials and prospects of graphene for active and interfacial layers. Critical Reviews in Solid State and Materials Sciences, 2020, 45, 261-288.	12.3	10
23	Synthesis of Carbon Nanomaterials from Biomass Utilizing Ionic Liquids for Potential Application in Solar Energy Conversion and Storage. Materials, 2020, 13, 3945.	2.9	16
24	Tuning the properties of boron-doped reduced graphene oxide by altering the boron content. New Journal of Chemistry, 2020, 44, 16864-16876.	2.8	19
25	Recent advances in graphene-based materials for dye-sensitized solar cell fabrication. RSC Advances, 2020, 10, 44453-44469.	3.6	43
26	Architecture and synthesis of P <i>,</i> N-heterocyclic phosphine ligands. Beilstein Journal of Organic Chemistry, 2020, 16, 362-383.	2.2	19
27	Improved short-circuit current density in bulk heterojunction solar cells with reduced graphene oxide-germanium dioxide nanocomposite in the photoactive layer. Materials Chemistry and Physics, 2020, 254, 123448.	4.0	13
28	Conversion of residue biomass into value added carbon materials: utilisation of sugarcane bagasse and ionic liquids. Journal of Materials Science, 2019, 54, 12476-12487.	3.7	16
29	Synthesis, crystal structures and electrochemical properties of ferrocenyl imidazole derivatives. Heliyon, 2019, 5, e02580.	3.2	4
30	Effect of Doping Temperatures and Nitrogen Precursors on the Physicochemical, Optical, and Electrical Conductivity Properties of Nitrogen-Doped Reduced Graphene Oxide. Materials, 2019, 12, 3376.	2.9	75
31	Ionic liquids and cellulose: Innovative feedstock for synthesis of carbon nanostructured material. Materials Chemistry and Physics, 2019, 234, 201-209.	4.0	6
32	Mechanistic formation of hazardous molecular heterocyclic amines from high temperature pyrolysis of model biomass materials: cellulose and tyrosine. BMC Chemistry, 2019, 13, 126.	3.8	7
33	Heteroatom-doped graphene and its application as a counter electrode in dye-sensitized solar cells. International Journal of Energy Research, 2019, 43, 1702-1734.	4.5	22
34	N,O-Amino-phenolate Mg(II) and Zn(II) Schiff base complexes: Synthesis and application in ring-opening polymerization of ε-caprolactone and lactides. Inorganica Chimica Acta, 2019, 487, 264-274.	2.4	26
35	Graphene/pyrrolic-structured nitrogen-doped CNT nanocomposite supports for Pd-catalysed Heck coupling and chemoselective hydrogenation of nitroarenes. SN Applied Sciences, 2019, 1, 1.	2.9	6
36	Polymer solar cells with reduced graphene oxide–germanium quantum dots nanocomposite in the hole transport layer. Journal of Materials Science: Materials in Electronics, 2018, 29, 7820-7831.	2.2	14

#	Article	IF	CITATIONS
37	The physical and electrochemical properties of nitrogen-doped carbon nanotube- and reduced graphene oxide-titania nanocomposites. Materials Chemistry and Physics, 2018, 213, 102-112.	4.0	18
38	Zn(II) and Cu(II) unsymmetrical formamidine complexes as effective initiators for ringâ€opening polymerization of cyclic esters. Applied Organometallic Chemistry, 2018, 32, e4247.	3.5	15
39	Graphene for Thermoelectric Applications: Prospects and Challenges. Critical Reviews in Solid State and Materials Sciences, 2018, 43, 133-157.	12.3	94

40

#	Article	IF	CITATIONS
55	Advances in carbon nanotubes as efficacious supports for palladium-catalysed carbon–carbon cross-coupling reactions. Journal of Materials Science, 2017, 52, 9225-9248.	3.7	53
56	The effect of pyridinic- and pyrrolic-nitrogen in nitrogen-doped carbon nanotubes used as support for Pd-catalyzed nitroarene reduction: an experimental and theoretical study. Journal of Materials Science, 2017, 52, 10751-10765.	3.7	17
57	Effect of graphite/sodium nitrate ratio and reaction time on the physicochemical properties of graphene oxide. New Carbon Materials, 2017, 32, 174-187.	6.1	24
58	Silver(I)-pyridinyl Schiff base complexes: Synthesis, structural characterization and reactivity in ring-opening polymerisation of ε-caprolactone. Inorganica Chimica Acta, 2017, 457, 160-170.	2.4	14
59	Physicochemical characterisation of graphene oxide and reduced graphene oxide composites for electrochemical capacitors. Journal of Materials Science: Materials in Electronics, 2017, 28, 18715-18734.	2.2	7
60	Synthesis and polymerization kinetics of ε-caprolactone and ʟ-lactide to low molecular weight polyesters catalyzed by Zn(II) and Cu(II) N -hydroxy- N , N ′-diarylformamidine complexes. Polyhedron, 2017, 138, 295-305.	2.2	13
61	The crystal structure of the Schiff base (<i>E</i>)-2,6-diisopropyl- <i>N</i> -(pyridin-3-yl-methylene)aniline, C ₁₈ H ₂₂ N ₂ . Zeitschrift Fur Kristallographie - New Crystal Structures. 2017. 232. 525-526.	0.3	1
62	Reduced graphene oxide-germanium quantum dot nanocomposite: electronic, optical and magnetic properties. Nanotechnology, 2017, 28, 495703.	2.6	15
63	Coordination polymers and discrete complexes of Ag(I)-N-(pyridylmethylene)anilines: synthesis, crystal structures and photophysical properties. Journal of Coordination Chemistry, 2017, 70, 2796-2814.	2.2	7
64	The crystal structure of the Schiff base (E)-2,6-diisopropyl-N-(pyridin-4-ylmethylene)aniline, C18H22N2. Zeitschrift Fur Kristallographie - New Crystal Structures, 2017, 232, 363-364.	0.3	1
65	Some perspectives on nitrogen-doped carbon nanotube synthesis from acetonitrile and N,N′-dimethylformamide mixtures. Materials Chemistry and Physics, 2017, 199, 435-453.	4.0	6
66	Experimental and DFT studies on the selective adsorption of Pb 2+ and Zn 2+ from aqueous solution by nitrogen-functionalized multiwalled carbon nanotubes. Separation and Purification Technology, 2017, 188, 174-187.	7.9	58
67	Low temperature synthesis of multiwalled carbon nanotubes and incorporation into an organic solar cell. Journal of Experimental Nanoscience, 2017, 12, 363-383.	2.4	11
68	The physicochemical properties and capacitive functionality of pyrrolic- and pyridinic-nitrogen, and boron-doped reduced graphene oxide. Electrochimica Acta, 2017, 258, 467-476.	5.2	18
69	Organic Solar Cells with Boron- or Nitrogen-Doped Carbon Nanotubes in the P3HT : PCBM Photoactive Layer. Journal of Nanomaterials, 2016, 2016, 1-11.	2.7	9
70	Layered double hydroxide- and graphene-based hierarchical nanocomposites: Synthetic strategies and promising applications in energy conversion and conservation. Nano Research, 2016, 9, 3598-3621.	10.4	103
71	A dual-purpose silver nanoparticles biosynthesized using aqueous leaf extract of Detarium microcarpum : An under-utilized species. Talanta, 2016, 160, 735-744.	5.5	28
72	Transforming inorganic layered montmorillonite into inorganic–organic hybrid materials for various applications: a brief overview. Inorganic Chemistry Frontiers, 2016, 3, 1100-1111.	6.0	49

#	Article	IF	CITATIONS
73	A facile approach towards increasing the nitrogen-content in nitrogen-doped carbon nanotubes via halogenated catalysts. Journal of Solid State Chemistry, 2016, 235, 202-211.	2.9	18
74	Structural and kinetic studies of the ring-opening polymerization of cyclic esters using N,N′ diarylformamidines Zn(II) complexes. Polyhedron, 2016, 110, 63-72.	2.2	20
75	Zn(<scp>ii</scp>) and Cu(<scp>ii</scp>) formamidine complexes: structural, kinetics and polymer tacticity studies in the ring-opening polymerization of Îμ-caprolactone and lactides. New Journal of Chemistry, 2016, 40, 3499-3510.	2.8	33
76	Nitrogen-functionalised carbon nanotubes as a novel adsorbent for the removal of Cu(<scp>ii</scp>) from aqueous solution. RSC Advances, 2016, 6, 2731-2745.	3.6	44
77	Synthesis, physical and antimicrobial studies of ferrocenyl-N-(pyridinylmethylene)anilines and ferrocenyl-N-(pyridinylmethyl)anilines. South African Journal of Chemistry, 2016, 69, .	0.6	11
78	A review on the use of carbon nanostructured materials in electrochemical capacitors. International Journal of Energy Research, 2015, 39, 1955-1980.	4.5	64
79	Effect of boron concentration on physicochemical properties of boron-doped carbon nanotubes. Materials Chemistry and Physics, 2015, 153, 323-332.	4.0	21
80	Application of heteroatom-containing iron(II) piano-stool complexes for the synthesis of shaped carbon nanomaterials. Journal of Organometallic Chemistry, 2015, 780, 13-19.	1.8	2
81	Tuning the nitrogen content and surface properties of nitrogen-doped carbon nanotubes synthesized using a nitrogen-containing ferrocenyl derivative and ethylbenzoate. Journal of Materials Science, 2015, 50, 1187-1200.	3.7	19
82	Review: Multimetallic silver(I)–pyridinyl complexes: coordination of silver(I) and luminescence. Journal of Coordination Chemistry, 2015, 68, 3389-3431.	2.2	44
83	Bulk Heterojunction Solar Cell with Nitrogen-Doped Carbon Nanotubes in the Active Layer: Effect of Nanocomposite Synthesis Technique on Photovoltaic Properties. Materials, 2015, 8, 2415-2432.	2.9	15
84	Effectiveness of carbon nanotube–cobalt ferrite nanocomposites for the adsorption of rhodamine B from aqueous solutions. RSC Advances, 2015, 5, 22724-22739.	3.6	92
85	Charge extracting buffer layers in bulkheterojunction organic solar cell. Journal of Materials Science: Materials in Electronics, 2015, 26, 9891-9897.	2.2	2
86	Pyrrolic nitrogen-doped carbon nanotubes: physicochemical properties, interactions with Pd and their role in the selective hydrogenation of nitrobenzophenone. RSC Advances, 2015, 5, 109-122.	3.6	59
87	Multiwalled carbon nanotube-titania nanocomposites: Understanding nano-structural parameters and functionality in dye-sensitized solar cells. South African Journal of Chemistry, 2015, 68, .	0.6	36
88	A review on carbon nanotube/polymer composites for organic solar cells. International Journal of Energy Research, 2014, 38, 1635-1653.	4.5	84
89	Kinetics and mechanistic investigation into the possible activation of imidazolium trans-[tetrachloridodimethylsulfoxideimidazoleruthenate(<scp>iii</scp>)], NAMI-A, by 2-mercaptoethane sulfonate. Dalton Transactions, 2014, 43, 12943-12951.	3.3	7
90	Mechanochemical synthesis and spectroscopic properties of 1,1′-ferrocenyldiacrylonitriles: the effect of <i>para</i> -substituents. Journal of Coordination Chemistry, 2014, 67, 1905-1922.	2.2	12

#	Article	IF	CITATIONS
91	Adsorption studies of aqueous Pb(II) onto a sugarcane bagasse/multi-walled carbon nanotube composite. Physics and Chemistry of the Earth, 2013, 66, 157-166.	2.9	94
92	Application of ferrocenylimidazolium salts as catalysts for the transfer hydrogenation of ketones. Applied Organometallic Chemistry, 2013, 27, 98-108.	3.5	12
93	Usage of carbon nanotubes as platinum and nickel catalyst support in dehydrogenation reactions. Catalysis Today, 2013, 217, 65-75.	4.4	56
94	Nitrogen-Doped Carbon Nanotubes Synthesised by Pyrolysis of (4-{[(pyridine-4-yl)methylidene]amino}phenyl)ferrocene. Journal of Nanomaterials, 2013, 2013, 1-7.	2.7	22
95	1-(Ferrocen-1-ylmethyl)-3-methylimidazol-3-ium iodide. Acta Crystallographica Section E: Structure Reports Online, 2012, 68, m1469-m1469.	0.2	Ο
96	(4-{[(Pyridin-4-yl)methylidene]amino}phenyl)ferrocene. Acta Crystallographica Section E: Structure Reports Online, 2012, 68, m1535-m1535.	0.2	1
97	1-(Ferrocen-1-ylmethyl)-3-methylimidazol-3-ium hexafluoridophosphate. Acta Crystallographica Section E: Structure Reports Online, 2012, 68, m353-m353.	0.2	2
98	Transition metal free transfer hydrogenation of ketones promoted by 1,3-diarylimidazolium salts and KOH. Tetrahedron Letters, 2012, 53, 4925-4928.	1.4	20
99	Heteroatomâ€containing ferrocene derivatives as catalysts for MWCNTs and other shaped carbon nanomaterials. Applied Organometallic Chemistry, 2012, 26, 536-545.	3.5	12
100	Synthesis and Characterization of Imidazolium Salts Bearing Fluorinated Anions. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2012, 638, 2304-2309.	1.2	4
101	Determination of Selected Heavy Metals Using Amperometric Horseradish Peroxidase (HRP) Inhibition Biosensor. Analytical Letters, 2011, 44, 2031-2046.	1.8	42
102	Carbon Nanotubes as Supports for Palladium and Bimetallic Catalysts for Use in Hydrogenation Reactions. Platinum Metals Review, 2011, 55, 154-169.	1.2	101
103	Dicarbonyl(η5-cyclopentadienyl)[2-(phenylsulfanyl)ethyl]iron(II). Acta Crystallographica Section E: Structure Reports Online, 2011, 67, m644-m644.	0.2	0
104	3-Ferrocenyl-2-(4-nitrophenyl)acrylonitrile. Acta Crystallographica Section E: Structure Reports Online, 2011, 67, m1293-m1293.	0.2	1
105	[1,4-Phenylenebis(methylene)]bis(triphenylphosphonium) bis(tetrafluoroborate). Acta Crystallographica Section E: Structure Reports Online, 2011, 67, o3391-o3391.	0.2	2
106	Synthesis, characterisation and properties of ferrocenylalkylimidazolium salts. Journal of Organometallic Chemistry, 2010, 695, 1126-1132.	1.8	27
107	Influence of methylimidazole isomers on ferrocene-catalysed nitrogen doped carbon nanotube synthesis. Journal of Organometallic Chemistry, 2010, 695, 1451-1457.	1.8	21
108	1-(6-Ferrocenylhexyl)-1H-imidazole. Acta Crystallographica Section E: Structure Reports Online, 2010, 66, m412-m412.	0.2	2

#	Article	IF	CITATIONS
109	Solvent-free reactions of N,N′-thiocarbonyldiimidazole with ferrocenylcarbinols. Journal of Organometallic Chemistry, 2009, 694, 207-212.	1.8	8
110	Synthesis and characterization of palladium(II) and platinum(II) complexes with ferrocenylimidazole. Journal of Organometallic Chemistry, 2009, 694, 1407-1418.	1.8	5
111	The effect of arylferrocene ring substituents on the synthesis of multi-walled carbon nanotubes. Journal of Organometallic Chemistry, 2009, 694, 2222-2227.	1.8	10
112	The use of organometallic transition metal complexes in the synthesis of shaped carbon nanomaterials. Journal of Organometallic Chemistry, 2008, 693, 2205-2222.	1.8	74
113	CVD synthesis of nitrogen doped carbon nanotubes using ferrocene/aniline mixtures. Journal of Organometallic Chemistry, 2008, 693, 2942-2948.	1.8	72
114	1-(4-Bromophenyl)ferrocene. Acta Crystallographica Section E: Structure Reports Online, 2008, 64, m1376-m1376.	0.2	3
115	1-Ferrocenylmethyl-1H-imidazole. Acta Crystallographica Section E: Structure Reports Online, 2008, 64, m1451-m1451.	0.2	4
116	4-Ferrocenylphenol. Acta Crystallographica Section E: Structure Reports Online, 2008, 64, m1630-m1630.	0.2	2
117	Effect of Ferrocene/Carbon Ratio on the Size and Shape of Carbon Nanotubes and Microspheres. Organometallics, 2007, 26, 4083-4085.	2.3	42
118	Further solvent-free reactions of ferrocenylaldehydes: Synthesis of 1,1′-ferrocenyldiimines and ferrocenylacrylonitriles. Journal of Organometallic Chemistry, 2007, 692, 3443-3453.	1.8	30
119	Solvent-free synthesis of ferrocenylimines. Journal of Organometallic Chemistry, 2004, 689, 1617-1622.	1.8	20
120	Synthesis of ferrocenylphenyl derivatives including biphenylferrocenes, arylferrocenylphenyl ethers and arylferrocenylphenyl amines. Journal of Organometallic Chemistry, 2002, 645, 65-81.	1.8	22
121	The synthesis and X-ray crystal structure of [(4-ferrocenylphenylimido)]trichlorobis(triphenylphosphine)rhenium(v) and related ferrocenyl–rhenium(v) compoundsâ€. Dalton Transactions RSC, 2001, , 2624-2633.	2.3	4
122	Removal of Cd2+ and Hg2+ from aqueous solutions by adsorption onto nitrogen-functionalized carbon nanotubes. , 0, 108, 253-267.		15
123	Stereoselective homo- and co-polymerization of lactides and ε-caprolactone catalysed by highly active racemic zinc(II) pyridyl complexes. Transition Metal Chemistry, 0, , 1.	1.4	0
124	Enhanced performance by heteroatomâ€doped reduced graphene <scp> oxideâ€TiO ₂ </scp> â€based nanocomposites as photoanodes in dyeâ€sensitised solar cells. International Journal of Energy Research, 0, , .	4.5	3