Vincent O Nyamori

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6700076/publications.pdf

Version: 2024-02-01

201674 2,918 124 27 citations h-index papers

47 g-index 129 129 129 3778 docs citations times ranked citing authors all docs

214800

#	Article	IF	CITATIONS
1	A review of the current status of graphitic carbon nitride. Critical Reviews in Solid State and Materials Sciences, 2021, 46, 189-217.	12.3	160
2	Facile Synthesis of Three-Dimensional Mg–Al Layered Double Hydroxide/Partially Reduced Graphene Oxide Nanocomposites for the Effective Removal of Pb ²⁺ from Aqueous Solution. ACS Applied Materials & Interfaces, 2017, 9, 17290-17305.	8.0	125
3	Layered double hydroxide- and graphene-based hierarchical nanocomposites: Synthetic strategies and promising applications in energy conversion and conservation. Nano Research, 2016, 9, 3598-3621.	10.4	103
4	Carbon Nanotubes as Supports for Palladium and Bimetallic Catalysts for Use in Hydrogenation Reactions. Platinum Metals Review, 2011, 55, 154-169.	1.2	101
5	Adsorption studies of aqueous Pb(II) onto a sugarcane bagasse/multi-walled carbon nanotube composite. Physics and Chemistry of the Earth, 2013, 66, 157-166.	2.9	94
6	Graphene for Thermoelectric Applications: Prospects and Challenges. Critical Reviews in Solid State and Materials Sciences, 2018, 43, 133-157.	12.3	94
7	Effectiveness of carbon nanotube–cobalt ferrite nanocomposites for the adsorption of rhodamine B from aqueous solutions. RSC Advances, 2015, 5, 22724-22739.	3.6	92
8	A review on carbon nanotube/polymer composites for organic solar cells. International Journal of Energy Research, 2014, 38, 1635-1653.	4.5	84
9	Effect of Doping Temperatures and Nitrogen Precursors on the Physicochemical, Optical, and Electrical Conductivity Properties of Nitrogen-Doped Reduced Graphene Oxide. Materials, 2019, 12, 3376.	2.9	75
10	The use of organometallic transition metal complexes in the synthesis of shaped carbon nanomaterials. Journal of Organometallic Chemistry, 2008, 693, 2205-2222.	1.8	74
11	CVD synthesis of nitrogen doped carbon nanotubes using ferrocene/aniline mixtures. Journal of Organometallic Chemistry, 2008, 693, 2942-2948.	1.8	72
12	A review on the use of carbon nanostructured materials in electrochemical capacitors. International Journal of Energy Research, 2015, 39, 1955-1980.	4.5	64
13	Pyrrolic nitrogen-doped carbon nanotubes: physicochemical properties, interactions with Pd and their role in the selective hydrogenation of nitrobenzophenone. RSC Advances, 2015, 5, 109-122.	3.6	59
14	Experimental and DFT studies on the selective adsorption of Pb 2+ and Zn 2+ from aqueous solution by nitrogen-functionalized multiwalled carbon nanotubes. Separation and Purification Technology, 2017, 188, 174-187.	7.9	58
15	Usage of carbon nanotubes as platinum and nickel catalyst support in dehydrogenation reactions. Catalysis Today, 2013, 217, 65-75.	4.4	56
16	Advances in carbon nanotubes as efficacious supports for palladium-catalysed carbon–carbon cross-coupling reactions. Journal of Materials Science, 2017, 52, 9225-9248.	3.7	53
17	Transforming inorganic layered montmorillonite into inorganic–organic hybrid materials for various applications: a brief overview. Inorganic Chemistry Frontiers, 2016, 3, 1100-1111.	6.0	49
18	Multi-dimensional applications of graphitic carbon nitride nanomaterials – A review. Journal of Molecular Liquids, 2021, 344, 117820.	4.9	46

#	Article	IF	CITATIONS
19	Review: Multimetallic silver(I)–pyridinyl complexes: coordination of silver(I) and luminescence. Journal of Coordination Chemistry, 2015, 68, 3389-3431.	2.2	44
20	Nitrogen-functionalised carbon nanotubes as a novel adsorbent for the removal of Cu(<scp>ii</scp>) from aqueous solution. RSC Advances, 2016, 6, 2731-2745.	3.6	44
21	Recent advances in graphene-based materials for dye-sensitized solar cell fabrication. RSC Advances, 2020, 10, 44453-44469.	3.6	43
22	Effect of Ferrocene/Carbon Ratio on the Size and Shape of Carbon Nanotubes and Microspheres. Organometallics, 2007, 26, 4083-4085.	2.3	42
23	Determination of Selected Heavy Metals Using Amperometric Horseradish Peroxidase (HRP) Inhibition Biosensor. Analytical Letters, 2011, 44, 2031-2046.	1.8	42
24	High-performance organic solar cells utilizing graphene oxide in the active and hole transport layers. Solar Energy, 2018, 171, 83-91.	6.1	42
25	Multiwalled carbon nanotube-titania nanocomposites: Understanding nano-structural parameters and functionality in dye-sensitized solar cells. South African Journal of Chemistry, 2015, 68, .	0.6	36
26	Zn($<$ scp $>$ ii $<$ /scp $>$) and Cu($<$ scp $>$ ii $<$ /scp $>$) formamidine complexes: structural, kinetics and polymer tacticity studies in the ring-opening polymerization of $\hat{l}\mu$ -caprolactone and lactides. New Journal of Chemistry, 2016, 40, 3499-3510.	2.8	33
27	Further solvent-free reactions of ferrocenylaldehydes: Synthesis of $1,1\hat{a}\in^2$ -ferrocenyldiimines and ferrocenylacrylonitriles. Journal of Organometallic Chemistry, 2007, 692, 3443-3453.	1.8	30
28	Design and synthesis of quinoline-pyrimidine inspired hybrids as potential plasmodial inhibitors. European Journal of Medicinal Chemistry, 2021, 217, 113330.	5.5	29
29	A dual-purpose silver nanoparticles biosynthesized using aqueous leaf extract of Detarium microcarpum: An under-utilized species. Talanta, 2016, 160, 735-744.	5.5	28
30	Synthesis, characterisation and properties of ferrocenylalkylimidazolium salts. Journal of Organometallic Chemistry, 2010, 695, 1126-1132.	1.8	27
31	N,O-Amino-phenolate Mg(II) and Zn(II) Schiff base complexes: Synthesis and application in ring-opening polymerization of $\hat{l}\mu$ -caprolactone and lactides. Inorganica Chimica Acta, 2019, 487, 264-274.	2.4	26
32	Recent Applications of Carbon Nanotubes in Organic Solar Cells. Frontiers in Chemistry, 2021, 9, 733552.	3.6	25
33	Effect of graphite/sodium nitrate ratio and reaction time on the physicochemical properties of graphene oxide. New Carbon Materials, 2017, 32, 174-187.	6.1	24
34	Synthesis of ferrocenylphenyl derivatives including biphenylferrocenes, arylferrocenylphenyl ethers and arylferrocenylphenyl amines. Journal of Organometallic Chemistry, 2002, 645, 65-81.	1.8	22
35	Nitrogen-Doped Carbon Nanotubes Synthesised by Pyrolysis of (4-{[(pyridine-4-yl)methylidene]amino}phenyl)ferrocene. Journal of Nanomaterials, 2013, 2013, 1-7.	2.7	22
36	A critical review of the occurrence of perfluoroalkyl acids in aqueous environments and their removal by adsorption onto carbon nanotubes. Reviews in Environmental Science and Biotechnology, 2018, 17, 603-635.	8.1	22

3

#	Article	IF	CITATIONS
37	Heteroatom-doped graphene and its application as a counter electrode in dye-sensitized solar cells. International Journal of Energy Research, 2019, 43, 1702-1734.	4.5	22
38	Organic solar cells: Current perspectives on grapheneâ€based materials for electrodes, electron acceptors and interfacial layers. International Journal of Energy Research, 2021, 45, 6518-6549.	4.5	22
39	A theoretical investigation of the effect of the hole and electron transport materials on the performance of a lead-free perovskite solar cell based on CH3NH3SnI3. Journal of Computational Electronics, 2021, 20, 993-1005.	2.5	22
40	Influence of methylimidazole isomers on ferrocene-catalysed nitrogen doped carbon nanotube synthesis. Journal of Organometallic Chemistry, 2010, 695, 1451-1457.	1.8	21
41	Effect of boron concentration on physicochemical properties of boron-doped carbon nanotubes. Materials Chemistry and Physics, 2015, 153, 323-332.	4.0	21
42	Solvent-free synthesis of ferrocenylimines. Journal of Organometallic Chemistry, 2004, 689, 1617-1622.	1.8	20
43	Transition metal free transfer hydrogenation of ketones promoted by 1,3-diarylimidazolium salts and KOH. Tetrahedron Letters, 2012, 53, 4925-4928.	1.4	20
44	Structural and kinetic studies of the ring-opening polymerization of cyclic esters using N,N′ diarylformamidines Zn(II) complexes. Polyhedron, 2016, 110, 63-72.	2.2	20
45	Silver(I)-pyridinyl Schiff base complexes: Synthesis, characterisation and antimicrobial studies. Journal of Molecular Structure, 2017, 1135, 118-128.	3.6	20
46	A review of graphene derivative enhancers for perovskite solar cells. Nanoscale Advances, 2022, 4, 2057-2076.	4.6	20
47	Tuning the nitrogen content and surface properties of nitrogen-doped carbon nanotubes synthesized using a nitrogen-containing ferrocenyl derivative and ethylbenzoate. Journal of Materials Science, 2015, 50, 1187-1200.	3.7	19
48	Suzuki–Miyaura reaction and solventfree oxidation of benzyl alcohol by Pd/nitrogen-doped CNTs catalyst. Journal of Materials Science, 2018, 53, 15817-15836.	3.7	19
49	Tuning the properties of boron-doped reduced graphene oxide by altering the boron content. New Journal of Chemistry, 2020, 44, 16864-16876.	2.8	19
50	Architecture and synthesis of P <i>,</i> N-heterocyclic phosphine ligands. Beilstein Journal of Organic Chemistry, 2020, 16, 362-383.	2.2	19
51	A facile approach towards increasing the nitrogen-content in nitrogen-doped carbon nanotubes via halogenated catalysts. Journal of Solid State Chemistry, 2016, 235, 202-211.	2.9	18
52	The physicochemical properties and capacitive functionality of pyrrolic- and pyridinic-nitrogen, and boron-doped reduced graphene oxide. Electrochimica Acta, 2017, 258, 467-476.	5.2	18
53	The physical and electrochemical properties of nitrogen-doped carbon nanotube- and reduced graphene oxide-titania nanocomposites. Materials Chemistry and Physics, 2018, 213, 102-112.	4.0	18
54	Synthesis, characterization, antimicrobial screening and DNA binding of novel silver(I)â€"thienylterpyridine and silver(I)â€"furylterpyridine complexes. Applied Organometallic Chemistry, 2018, 32, e4554.	3 . 5	18

#	Article	IF	CITATIONS
55	The effect of pyridinic- and pyrrolic-nitrogen in nitrogen-doped carbon nanotubes used as support for Pd-catalyzed nitroarene reduction: an experimental and theoretical study. Journal of Materials Science, 2017, 52, 10751-10765.	3.7	17
56	Oxygen-modified multiwalled carbon nanotubes: physicochemical properties and capacitor functionality. International Journal of Energy Research, 2017, 41, 1182-1201.	4.5	16
57	Conversion of residue biomass into value added carbon materials: utilisation of sugarcane bagasse and ionic liquids. Journal of Materials Science, 2019, 54, 12476-12487.	3.7	16
58	Synthesis of Carbon Nanomaterials from Biomass Utilizing Ionic Liquids for Potential Application in Solar Energy Conversion and Storage. Materials, 2020, 13, 3945.	2.9	16
59	Bulk Heterojunction Solar Cell with Nitrogen-Doped Carbon Nanotubes in the Active Layer: Effect of Nanocomposite Synthesis Technique on Photovoltaic Properties. Materials, 2015, 8, 2415-2432.	2.9	15
60	Reduced graphene oxide-germanium quantum dot nanocomposite: electronic, optical and magnetic properties. Nanotechnology, 2017, 28, 495703.	2.6	15
61	Zn(II) and Cu(II) unsymmetrical formamidine complexes as effective initiators for ringâ€opening polymerization of cyclic esters. Applied Organometallic Chemistry, 2018, 32, e4247.	3.5	15
62	A comparative study between thermal etching and liquid exfoliation of bulk graphitic carbon nitride to nanosheets for the photocatalytic degradation of a model environmental pollutant, Rhodamine B. Journal of Materials Science: Materials in Electronics, 2021, 32, 687-706.	2.2	15
63	Removal of Cd2+ and Hg2+ from aqueous solutions by adsorption onto nitrogen-functionalized carbon nanotubes., 0, 108, 253-267.		15
64	Silver(I)-pyridinyl Schiff base complexes: Synthesis, structural characterization and reactivity in ring-opening polymerisation of $\hat{l}\mu$ -caprolactone. Inorganica Chimica Acta, 2017, 457, 160-170.	2.4	14
65	Polymer solar cells with reduced graphene oxide–germanium quantum dots nanocomposite in the hole transport layer. Journal of Materials Science: Materials in Electronics, 2018, 29, 7820-7831.	2.2	14
66	Synthesis and polymerization kinetics of $\hat{l}\mu$ -caprolactone and $\hat{E}\ddot{Y}$ -lactide to low molecular weight polyesters catalyzed by Zn(II) and Cu(II) N -hydroxy- N , N \hat{a} \in 2-diarylformamidine complexes. Polyhedron, 2017, 138, 295-305.	2.2	13
67	Improved short-circuit current density in bulk heterojunction solar cells with reduced graphene oxide-germanium dioxide nanocomposite in the photoactive layer. Materials Chemistry and Physics, 2020, 254, 123448.	4.0	13
68	Lactate dehydrogenase and malate dehydrogenase: Potential antiparasitic targets for drug development studies. Bioorganic and Medicinal Chemistry, 2021, 50, 116458.	3.0	13
69	Heteroatomâ€containing ferrocene derivatives as catalysts for MWCNTs and other shaped carbon nanomaterials. Applied Organometallic Chemistry, 2012, 26, 536-545.	3.5	12
70	Application of ferrocenylimidazolium salts as catalysts for the transfer hydrogenation of ketones. Applied Organometallic Chemistry, 2013, 27, 98-108.	3.5	12
71	Mechanochemical synthesis and spectroscopic properties of $1,1\hat{a}\in^2$ -ferrocenyldiacrylonitriles: the effect of <i>para</i> -substituents. Journal of Coordination Chemistry, 2014, 67, 1905-1922.	2.2	12
72	Perovskite Solar Cells: Current Trends in Grapheneâ€Based Materials for Transparent Conductive Electrodes, Active Layers, Charge Transport Layers, and Encapsulation Layers. Advanced Energy and Sustainability Research, 2021, 2, 2100050.	5.8	12

#	Article	IF	Citations
73	Graphitic carbon nitride-based new-generation solar cells: Critical challenges, recent breakthroughs and future prospects. Solar Energy, 2022, 239, 74-87.	6.1	12
74	Low temperature synthesis of multiwalled carbon nanotubes and incorporation into an organic solar cell. Journal of Experimental Nanoscience, 2017, 12, 363-383.	2.4	11
7 5	Hydrothermal synthesis of reduced graphene oxideâ€anatase titania nanocomposites for dual application in organic solar cells. International Journal of Energy Research, 2021, 45, 7293-7314.	4.5	11
76	Environmentally persistent free radicals and particulate emissions from the thermal degradation of Croton megalocarpus biodiesel. Environmental Science and Pollution Research, 2018, 25, 24807-24817.	5. 3	11
77	Synthesis, physical and antimicrobial studies of ferrocenyl-N-(pyridinylmethylene)anilines and ferrocenyl-N-(pyridinylmethyl)anilines. South African Journal of Chemistry, 2016, 69, .	0.6	11
78	The effect of arylferrocene ring substituents on the synthesis of multi-walled carbon nanotubes. Journal of Organometallic Chemistry, 2009, 694, 2222-2227.	1.8	10
79	Organic solar cells: Materials and prospects of graphene for active and interfacial layers. Critical Reviews in Solid State and Materials Sciences, 2020, 45, 261-288.	12.3	10
80	Synthesis and characterisation of heteroatom-doped reduced graphene oxide/bismuth oxide nanocomposites and their application as photoanodes in DSSCs. RSC Advances, 2022, 12, 2462-2472.	3.6	10
81	Organic Solar Cells with Boron- or Nitrogen-Doped Carbon Nanotubes in the P3HT : PCBM Photoactive Layer. Journal of Nanomaterials, 2016, 2016, 1-11.	2.7	9
82	Germanium quantum dot/nitrogen-doped graphene nanocomposite for high-performance bulk heterojunction solar cells. RSC Advances, 2018, 8, 21841-21849.	3.6	9
83	Solvent-free reactions of N,N′-thiocarbonyldiimidazole with ferrocenylcarbinols. Journal of Organometallic Chemistry, 2009, 694, 207-212.	1.8	8
84	Kinetics and mechanistic investigation into the possible activation of imidazolium trans-[tetrachloridodimethylsulfoxideimidazoleruthenate(<scp>iii</scp>)], NAMI-A, by 2-mercaptoethane sulfonate. Dalton Transactions, 2014, 43, 12943-12951.	3.3	7
85	Physicochemical characterisation of graphene oxide and reduced graphene oxide composites for electrochemical capacitors. Journal of Materials Science: Materials in Electronics, 2017, 28, 18715-18734.	2.2	7
86	Coordination polymers and discrete complexes of Ag(I)-N-(pyridylmethylene)anilines: synthesis, crystal structures and photophysical properties. Journal of Coordination Chemistry, 2017, 70, 2796-2814.	2,2	7
87	Free radicals and ultrafine particulate emissions from the co-pyrolysis of Croton megalocarpus biodiesel and fossil diesel. Chemistry Central Journal, 2018, 12, 89.	2.6	7
88	Mechanistic formation of hazardous molecular heterocyclic amines from high temperature pyrolysis of model biomass materials: cellulose and tyrosine. BMC Chemistry, 2019, 13, 126.	3.8	7
89	Dual heteroatom-doped reduced graphene oxide and its application in dye-sensitized solar cells. Optical Materials, 2021, 122, 111689.	3.6	7
90	Optimization of Hole Transport Layer Materials for a Leadâ€Free Perovskite Solar Cell Based on Formamidinium Tin Iodide. Energy Technology, 2021, 9, 2100859.	3.8	7

#	Article	IF	Citations
91	Current advances in perovskite oxides supported on graphene-based materials as interfacial layers of perovskite solar cells. Critical Reviews in Solid State and Materials Sciences, 2023, 48, 112-131.	12.3	7
92	Metalâ€organic chemical vapor deposition of anatase titania on multiwalled carbon nanotubes for electrochemical capacitors. Energy Science and Engineering, 2022, 10, 3493-3506.	4.0	7
93	Some perspectives on nitrogen-doped carbon nanotube synthesis from acetonitrile and N,N′-dimethylformamide mixtures. Materials Chemistry and Physics, 2017, 199, 435-453.	4.0	6
94	Physicochemical properties of nitrogen-doped carbon nanotubes from metallocenes and ferrocenyl imidazolium compounds. Journal of Organometallic Chemistry, 2018, 868, 66-75.	1.8	6
95	Ionic liquids and cellulose: Innovative feedstock for synthesis of carbon nanostructured material. Materials Chemistry and Physics, 2019, 234, 201-209.	4.0	6
96	Graphene/pyrrolic-structured nitrogen-doped CNT nanocomposite supports for Pd-catalysed Heck coupling and chemoselective hydrogenation of nitroarenes. SN Applied Sciences, 2019, $1,1.$	2.9	6
97	Simulation of the photovoltaic performance of a perovskite solar cell based on methylammonium lead iodide. Optical and Quantum Electronics, 2022, 54, .	3.3	6
98	Synthesis and characterization of palladium(II) and platinum(II) complexes with ferrocenylimidazole. Journal of Organometallic Chemistry, 2009, 694, 1407-1418.	1.8	5
99	Environmental inhalants from tobacco burning: Tar and particulate emissions. Scientific African, 2018, 1, e00004.	1.5	5
100	Surface modifications of carbon nanotubes towards tailored electrochemical characteristics. Journal of Materials Science: Materials in Electronics, 2021, 32, 27923.	2.2	5
101	The synthesis and X-ray crystal structure of [(4-ferrocenylphenyliphenylphosphine)rhenium(v) and related ferrocenyl–rhenium(v) compoundsâ€. Dalton Transactions RSC, 2001, , 2624-2633.	2.3	4
102	Synthesis and Characterization of Imidazolium Salts Bearing Fluorinated Anions. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2012, 638, 2304-2309.	1.2	4
103	Synthesis, crystal structures and electrochemical properties of ferrocenyl imidazole derivatives. Heliyon, 2019, 5, e02580.	3.2	4
104	Effects of Ionic Liquid and Biomass Sources on Carbon Nanotube Physical and Electrochemical Properties. Sustainability, 2021, 13, 2977.	3.2	4
105	1-Ferrocenylmethyl-1H-imidazole. Acta Crystallographica Section E: Structure Reports Online, 2008, 64, m1451-m1451.	0.2	4
106	1-(4-Bromophenyl)ferrocene. Acta Crystallographica Section E: Structure Reports Online, 2008, 64, m1376-m1376.	0.2	3
107			

7

#	Article	IF	CITATIONS
109	[1,4-Phenylenebis(methylene)]bis(triphenylphosphonium) bis(tetrafluoroborate). Acta Crystallographica Section E: Structure Reports Online, 2011, 67, o3391-o3391.	0.2	2
110	1-(Ferrocen-1-ylmethyl)-3-methylimidazol-3-ium hexafluoridophosphate. Acta Crystallographica Section E: Structure Reports Online, 2012, 68, m353-m353.	0.2	2
111	Application of heteroatom-containing iron(II) piano-stool complexes for the synthesis of shaped carbon nanomaterials. Journal of Organometallic Chemistry, 2015, 780, 13-19.	1.8	2
112	Charge extracting buffer layers in bulkheterojunction organic solar cell. Journal of Materials Science: Materials in Electronics, 2015, 26, 9891-9897.	2.2	2
113	4-Ferrocenylphenol. Acta Crystallographica Section E: Structure Reports Online, 2008, 64, m1630-m1630.	0.2	2
114	1-(6-Ferrocenylhexyl)-1H-imidazole. Acta Crystallographica Section E: Structure Reports Online, 2010, 66, m412-m412.	0.2	2
115	3-Ferrocenyl-2-(4-nitrophenyl)acrylonitrile. Acta Crystallographica Section E: Structure Reports Online, 2011, 67, m1293-m1293.	0.2	1
116	(4-{[(Pyridin-4-yl)methylidene]amino}phenyl)ferrocene. Acta Crystallographica Section E: Structure Reports Online, 2012, 68, m1535-m1535.	0.2	1
117	The crystal structure of the Schiff base (<i>E</i>)-2,6-diisopropyl- <i>N</i> -(pyridin-3-yl-methylene)aniline, C ₁₈ H ₂₂ N ₂ . Zeitschrift Fur Kristallographie - New Crystal Structures, 2017, 232, 525-526.	0.3	1
118	The crystal structure of the Schiff base (E)-2,6-diisopropyl-N-(pyridin-4-ylmethylene)aniline, C18H22N2. Zeitschrift Fur Kristallographie - New Crystal Structures, 2017, 232, 363-364.	0.3	1
119	Dioxin and dibenzofuran like molecular analogues from the pyrolysis of biomass materials—the emerging challenge in bio-oil production. BMC Chemistry, 2021, 15, 3.	3.8	1
120	Dicarbonyl (\hat{i} -5-cyclopentadienyl) [2-(phenylsulfanyl) ethyl] iron (II). Acta Crystallographica Section E: Structure Reports Online, 2011, 67, m644-m644.	0.2	0
121	1-(Ferrocen-1-ylmethyl)-3-methylimidazol-3-ium iodide. Acta Crystallographica Section E: Structure Reports Online, 2012, 68, m1469-m1469.	0.2	0
122	Crystal structure of tetrakis(ν2-acetato-κ2O:O′)-bis{[(E)-2,6-diisopropyl-N-(pyridin-3-ylmethylene)aniline]copper (II)}, C44H56Cu2N4O8. Zeitschrift Fur Kristallographie - New Crystal Structures, 2018, 233, 373-375.	0.3	0
123	Crystal structure of aqua-bis{[2,6-dimethyl-N-(pyridin-2-ylmethylene)aniline-κ2N,N′]}zinc(II) triflate monohydrate [ZnC29H31N4O]CF3SO3âH2O. Zeitschrift Fur Kristallographie - New Crystal Structures, 2018, 233, 7-8.	0.3	0
124	Stereoselective homo- and co-polymerization of lactides and $\hat{l}\mu$ -caprolactone catalysed by highly active racemic zinc(II) pyridyl complexes. Transition Metal Chemistry, 0, , 1.	1.4	0