Marta S Shocket

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6700070/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Detecting the impact of temperature on transmission of Zika, dengue, and chikungunya using mechanistic models. PLoS Neglected Tropical Diseases, 2017, 11, e0005568.	3.0	430
2	Thermal biology of mosquitoâ€borne disease. Ecology Letters, 2019, 22, 1690-1708.	6.4	349
3	Transmission of West Nile and five other temperate mosquito-borne viruses peaks at temperatures between 23°C and 26°C. ELife, 2020, 9, .	6.0	90
4	Temperature explains broad patterns of Ross River virus transmission. ELife, 2018, 7, .	6.0	67
5	Temperature Drives Epidemics in a Zooplankton-Fungus Disease System: A Trait-Driven Approach Points to Transmission via Host Foraging. American Naturalist, 2018, 191, 435-451.	2.1	58
6	Habitat, predators, and hosts regulate disease in <i>Daphnia</i> through direct and indirect pathways. Ecological Monographs, 2016, 86, 393-411.	5.4	47
7	How will mosquitoes adapt to climate warming?. ELife, 2021, 10, .	6.0	46
8	Resources, key traits and the size of fungal epidemics in <i><scp>D</scp>aphnia</i> populations. Journal of Animal Ecology, 2015, 84, 1010-1017.	2.8	39
9	Parasite rearing and infection temperatures jointly influence disease transmission and shape seasonality of epidemics. Ecology, 2018, 99, 1975-1987.	3.2	31
10	The influence of vectorâ€borne disease on human history: socioâ€ecological mechanisms. Ecology Letters, 2021, 24, 829-846.	6.4	28
11	Allocation, not male resistance, increases male frequency during epidemics: a case study in facultatively sexual hosts. Ecology, 2017, 98, 2773-2783.	3.2	23
12	Dengue fever in Saudi Arabia: A review of environmental and population factors impacting emergence and spread. Travel Medicine and Infectious Disease, 2019, 30, 46-53.	3.0	22
13	A proposed framework for the development and qualitative evaluation of West Nile virus models and their application to local public health decision-making. PLoS Neglected Tropical Diseases, 2021, 15, e0009653.	3.0	22
14	Parasites destabilize host populations by shifting stageâ€structured interactions. Ecology, 2016, 97, 439-449.	3.2	20
15	Genotypic variation in parasite avoidance behaviour and other mechanistic, nonlinear components of transmission. Proceedings of the Royal Society B: Biological Sciences, 2019, 286, 20192164.	2.6	20
16	Rapid evolution rescues hosts from competition and disease but—despite a dilution effect—increases the density of infected hosts. Proceedings of the Royal Society B: Biological Sciences, 2017, 284, 20171970.	2.6	20
17	Susceptible host availability modulates climate effects on dengue dynamics. Ecology Letters, 2021, 24, 415-425.	6.4	14
18	Virulent Disease Epidemics Can Increase Host Density by Depressing Foraging of Hosts. American Naturalist, 2022, 199, 75-90.	2.1	13

#	Article	IF	CITATIONS
19	Can hot temperatures limit disease transmission? A test of mechanisms in a zooplankton–fungus system. Functional Ecology, 2019, 33, 2017-2029.	3.6	10