Kay F Macleod

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/6700059/kay-f-macleod-publications-by-year.pdf

Version: 2024-04-10

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

42 13,784 27 43 g-index

43 ext. papers ext. citations 9.7 avg, IF 6.23 L-index

#	Paper	IF	Citations
42	ULK1 promotes mitophagy via phosphorylation and stabilization of BNIP3. <i>Scientific Reports</i> , 2021 , 11, 20526	4.9	9
41	Mitophagy in tumorigenesis and metastasis. Cellular and Molecular Life Sciences, 2021, 78, 3817-3851	10.3	20
40	BNIP3-dependent mitophagy promotes cytosolic localization of LC3B and metabolic homeostasis in the liver. <i>Autophagy</i> , 2021 , 17, 3530-3546	10.2	7
39	Autophagy in major human diseases. <i>EMBO Journal</i> , 2021 , 40, e108863	13	79
38	Mitophagy and Mitochondrial Dysfunction in Cancer. <i>Annual Review of Cancer Biology</i> , 2020 , 4, 41-60	13.3	24
37	Autophagy and cancer cell metabolism. <i>International Review of Cell and Molecular Biology</i> , 2019 , 347, 145-190	6	23
36	Oncogenic KRAS Induces NIX-Mediated Mitophagy to Promote Pancreatic Cancer. <i>Cancer Discovery</i> , 2019 , 9, 1268-1287	24.4	69
35	Autophagy, cancer stem cells and drug resistance. Journal of Pathology, 2019, 247, 708-718	9.4	147
34	Dia1-dependent adhesions are required by epithelial tissues to initiate invasion. <i>Journal of Cell Biology</i> , 2018 , 217, 1485-1502	7.3	15
33	Functions of autophagy in the tumor microenvironment and cancer metastasis. <i>FEBS Journal</i> , 2018 , 285, 1751-1766	5.7	110
32	Autophagic degradation of focal adhesions underlies metastatic cancer dissemination. <i>Molecular and Cellular Oncology</i> , 2017 , 4, e1198299	1.2	4
31	Expanding perspectives on the significance of mitophagy in cancer. <i>Seminars in Cancer Biology</i> , 2017 , 47, 110-124	12.7	94
30	mTOR and HDAC Inhibitors Converge on the TXNIP/Thioredoxin Pathway to Cause Catastrophic Oxidative Stress and Regression of RAS-Driven Tumors. <i>Cancer Discovery</i> , 2017 , 7, 1450-1463	24.4	59
29	Autophagy gene ATG7 regulates ultraviolet radiation-induced inflammation and skin tumorigenesis. <i>Autophagy</i> , 2017 , 13, 2086-2103	10.2	47
28	Novel insights into how autophagy regulates tumor cell motility. <i>Autophagy</i> , 2016 , 12, 1679-80	10.2	26
27	Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition). <i>Autophagy</i> , 2016 , 12, 1-222	10.2	3838
26	Autophagy Promotes Focal Adhesion Disassembly and Cell Motility of Metastatic Tumor Cells through the Direct Interaction of Paxillin with LC3. <i>Cell Reports</i> , 2016 , 15, 1660-72	10.6	180

(2007-2016)

25	In Brief: Mitophagy: mechanisms and role in human disease. <i>Journal of Pathology</i> , 2016 , 240, 253-255	9.4	87
24	Mitophagy and cancer. Cancer & Metabolism, 2015, 3, 4	5.4	157
23	Tumor suppressor functions of BNIP3 and mitophagy. <i>Autophagy</i> , 2015 , 11, 1937-8	10.2	82
22	Mitophagy defects arising from BNip3 loss promote mammary tumor progression to metastasis. <i>EMBO Reports</i> , 2015 , 16, 1145-63	6.5	169
21	Tumour suppressor gene function in carcinoma-associated fibroblasts: from tumour cells via EMT and back again?. <i>Journal of Pathology</i> , 2014 , 232, 283-8	9.4	28
20	p62/SQSTM1 accumulation in squamous cell carcinoma of head and neck predicts sensitivity to phosphatidylinositol 3-kinase pathway inhibitors. <i>PLoS ONE</i> , 2014 , 9, e90171	3.7	19
19	Mammary cancer initiation and progression studied with magnetic resonance imaging. <i>Breast Cancer Research</i> , 2014 , 16, 495	8.3	8
18	Mitochondrial dysfunction in cancer. Frontiers in Oncology, 2013 , 3, 292	5.3	293
17	Guidelines for the use and interpretation of assays for monitoring autophagy. Autophagy, 2012, 8, 445-	-5 44 .2	2783
16	BNip3 regulates mitochondrial function and lipid metabolism in the liver. <i>Molecular and Cellular Biology</i> , 2012 , 32, 2570-84	4.8	150
15	Exploiting cancer cell vulnerabilities to develop a combination therapy for ras-driven tumors. <i>Cancer Cell</i> , 2011 , 20, 400-13	24.3	199
14	Autophagy: assays and artifacts. <i>Journal of Pathology</i> , 2010 , 221, 117-24	9.4	584
13	Autophagy: cellular and molecular mechanisms. <i>Journal of Pathology</i> , 2010 , 221, 3-12	9.4	1813
12	The RB tumor suppressor: a gatekeeper to hormone independence in prostate cancer?. <i>Journal of Clinical Investigation</i> , 2010 , 120, 4179-82	15.9	22
11	Elevated poly-(ADP-ribose)-polymerase activity sensitizes retinoblastoma-deficient cells to DNA damage-induced necrosis. <i>Molecular Cancer Research</i> , 2009 , 7, 1099-109	6.6	16
10	The role of the RB tumour suppressor pathway in oxidative stress responses in the haematopoietic system. <i>Nature Reviews Cancer</i> , 2008 , 8, 769-81	31.3	47
9	Guidelines for the use and interpretation of assays for monitoring autophagy in higher eukaryotes. <i>Autophagy</i> , 2008 , 4, 151-75	10.2	1920
8	Deregulated E2f-2 underlies cell cycle and maturation defects in retinoblastoma null erythroblasts. <i>Molecular and Cellular Biology</i> , 2007 , 27, 8713-28	4.8	48

7	Regulation of mitochondrial integrity, autophagy and cell survival by BNIP3. <i>Autophagy</i> , 2007 , 3, 616-9	10.2	64
6	Effects of hypoxia on heterotypic macrophage interactions. <i>Cell Cycle</i> , 2007 , 6, 2620-4	4.7	6
5	Hypoxic stress underlies defects in erythroblast islands in the Rb-null mouse. <i>Blood</i> , 2007 , 110, 2173-81	2.2	22
4	BNIP3 is an RB/E2F target gene required for hypoxia-induced autophagy. <i>Molecular and Cellular Biology</i> , 2007 , 27, 6229-42	4.8	295
3	Unrestrained erythroblast development in Nix-/- mice reveals a mechanism for apoptotic modulation of erythropoiesis. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2007 , 104, 6794-9	11.5	115
2	The Rb tumor suppressor in stress responses and hematopoietic homeostasis. <i>Cell Cycle</i> , 2005 , 4, 42-5	4.7	22
1	The Rb tumor suppressor is required for stress erythropoiesis. <i>EMBO Journal</i> . 2004 . 23. 4319-29	13	84