Kay F Macleod

List of Publications by Citations

Source: https://exaly.com/author-pdf/6700059/kay-f-macleod-publications-by-citations.pdf

Version: 2024-04-10

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

42 13,784 27 43 g-index

43 15,764 9.7 6.23 ext. papers ext. citations avg, IF L-index

#	Paper	IF	Citations
42	Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition). <i>Autophagy</i> , 2016 , 12, 1-222	10.2	3838
41	Guidelines for the use and interpretation of assays for monitoring autophagy. Autophagy, 2012, 8, 445-	-5 46 .2	2783
40	Guidelines for the use and interpretation of assays for monitoring autophagy in higher eukaryotes. <i>Autophagy</i> , 2008 , 4, 151-75	10.2	1920
39	Autophagy: cellular and molecular mechanisms. <i>Journal of Pathology</i> , 2010 , 221, 3-12	9.4	1813
38	Autophagy: assays and artifacts. <i>Journal of Pathology</i> , 2010 , 221, 117-24	9.4	584
37	BNIP3 is an RB/E2F target gene required for hypoxia-induced autophagy. <i>Molecular and Cellular Biology</i> , 2007 , 27, 6229-42	4.8	295
36	Mitochondrial dysfunction in cancer. <i>Frontiers in Oncology</i> , 2013 , 3, 292	5.3	293
35	Exploiting cancer cell vulnerabilities to develop a combination therapy for ras-driven tumors. <i>Cancer Cell</i> , 2011 , 20, 400-13	24.3	199
34	Autophagy Promotes Focal Adhesion Disassembly and Cell Motility of Metastatic Tumor Cells through the Direct Interaction of Paxillin with LC3. <i>Cell Reports</i> , 2016 , 15, 1660-72	10.6	180
33	Mitophagy defects arising from BNip3 loss promote mammary tumor progression to metastasis. <i>EMBO Reports</i> , 2015 , 16, 1145-63	6.5	169
32	Mitophagy and cancer. Cancer & Metabolism, 2015, 3, 4	5.4	157
31	BNip3 regulates mitochondrial function and lipid metabolism in the liver. <i>Molecular and Cellular Biology</i> , 2012 , 32, 2570-84	4.8	150
30	Autophagy, cancer stem cells and drug resistance. <i>Journal of Pathology</i> , 2019 , 247, 708-718	9.4	147
29	Unrestrained erythroblast development in Nix-/- mice reveals a mechanism for apoptotic modulation of erythropoiesis. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2007 , 104, 6794-9	11.5	115
28	Functions of autophagy in the tumor microenvironment and cancer metastasis. <i>FEBS Journal</i> , 2018 , 285, 1751-1766	5.7	110
27	Expanding perspectives on the significance of mitophagy in cancer. <i>Seminars in Cancer Biology</i> , 2017 , 47, 110-124	12.7	94
26	In Brief: Mitophagy: mechanisms and role in human disease. <i>Journal of Pathology</i> , 2016 , 240, 253-255	9.4	87

25	The Rb tumor suppressor is required for stress erythropoiesis. <i>EMBO Journal</i> , 2004 , 23, 4319-29	13	84
24	Tumor suppressor functions of BNIP3 and mitophagy. <i>Autophagy</i> , 2015 , 11, 1937-8	10.2	82
23	Autophagy in major human diseases. <i>EMBO Journal</i> , 2021 , 40, e108863	13	79
22	Oncogenic KRAS Induces NIX-Mediated Mitophagy to Promote Pancreatic Cancer. <i>Cancer Discovery</i> , 2019 , 9, 1268-1287	24.4	69
21	Regulation of mitochondrial integrity, autophagy and cell survival by BNIP3. <i>Autophagy</i> , 2007 , 3, 616-9	10.2	64
20	mTOR and HDAC Inhibitors Converge on the TXNIP/Thioredoxin Pathway to Cause Catastrophic Oxidative Stress and Regression of RAS-Driven Tumors. <i>Cancer Discovery</i> , 2017 , 7, 1450-1463	24.4	59
19	Deregulated E2f-2 underlies cell cycle and maturation defects in retinoblastoma null erythroblasts. <i>Molecular and Cellular Biology</i> , 2007 , 27, 8713-28	4.8	48
18	Autophagy gene ATG7 regulates ultraviolet radiation-induced inflammation and skin tumorigenesis. <i>Autophagy</i> , 2017 , 13, 2086-2103	10.2	47
17	The role of the RB tumour suppressor pathway in oxidative stress responses in the haematopoietic system. <i>Nature Reviews Cancer</i> , 2008 , 8, 769-81	31.3	47
16	Tumour suppressor gene function in carcinoma-associated fibroblasts: from tumour cells via EMT and back again?. <i>Journal of Pathology</i> , 2014 , 232, 283-8	9.4	28
15	Novel insights into how autophagy regulates tumor cell motility. <i>Autophagy</i> , 2016 , 12, 1679-80	10.2	26
14	Mitophagy and Mitochondrial Dysfunction in Cancer. <i>Annual Review of Cancer Biology</i> , 2020 , 4, 41-60	13.3	24
13	Autophagy and cancer cell metabolism. <i>International Review of Cell and Molecular Biology</i> , 2019 , 347, 145-190	6	23
12	Hypoxic stress underlies defects in erythroblast islands in the Rb-null mouse. <i>Blood</i> , 2007 , 110, 2173-81	2.2	22
11	The Rb tumor suppressor in stress responses and hematopoietic homeostasis. <i>Cell Cycle</i> , 2005 , 4, 42-5	4.7	22
10	The RB tumor suppressor: a gatekeeper to hormone independence in prostate cancer?. <i>Journal of Clinical Investigation</i> , 2010 , 120, 4179-82	15.9	22
9	Mitophagy in tumorigenesis and metastasis. Cellular and Molecular Life Sciences, 2021, 78, 3817-3851	10.3	20
8	p62/SQSTM1 accumulation in squamous cell carcinoma of head and neck predicts sensitivity to phosphatidylinositol 3-kinase pathway inhibitors. <i>PLoS ONE</i> , 2014 , 9, e90171	3.7	19

7	Elevated poly-(ADP-ribose)-polymerase activity sensitizes retinoblastoma-deficient cells to DNA damage-induced necrosis. <i>Molecular Cancer Research</i> , 2009 , 7, 1099-109	6.6	16
6	Dia1-dependent adhesions are required by epithelial tissues to initiate invasion. <i>Journal of Cell Biology</i> , 2018 , 217, 1485-1502	7-3	15
5	ULK1 promotes mitophagy via phosphorylation and stabilization of BNIP3. <i>Scientific Reports</i> , 2021 , 11, 20526	4.9	9
4	Mammary cancer initiation and progression studied with magnetic resonance imaging. <i>Breast Cancer Research</i> , 2014 , 16, 495	8.3	8
3	BNIP3-dependent mitophagy promotes cytosolic localization of LC3B and metabolic homeostasis in the liver. <i>Autophagy</i> , 2021 , 17, 3530-3546	10.2	7
2	Effects of hypoxia on heterotypic macrophage interactions. <i>Cell Cycle</i> , 2007 , 6, 2620-4	4.7	6
1	Autophagic degradation of focal adhesions underlies metastatic cancer dissemination. <i>Molecular and Cellular Oncology</i> , 2017 , 4, e1198299	1.2	4