List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6699962/publications.pdf

Version: 2024-02-01

KEKE HUANC

#	Article	IF	CITATIONS
1	New Materials in Hydrothermal Synthesis. Accounts of Chemical Research, 2001, 34, 239-247.	7.6	759
2	Coordination of Atomic Co–Pt Coupling Species at Carbon Defects as Active Sites for Oxygen Reduction Reaction. Journal of the American Chemical Society, 2018, 140, 10757-10763.	6.6	464
3	A Facile Strategy to Construct Amorphous Spinelâ€Based Electrocatalysts with Massive Oxygen Vacancies Using Ionic Liquid Dopant. Advanced Energy Materials, 2018, 8, 1800980.	10.2	156
4	Achieving Superior Electrocatalytic Performance by Surface Copper Vacancy Defects during Electrochemical Etching Process. Angewandte Chemie - International Edition, 2020, 59, 13778-13784.	7.2	152
5	Atomicâ€Scale Insights into Surface Lattice Oxygen Activation at the Spinel/Perovskite interface of Co ₃ O ₄ /La _{0.3} Sr _{0.7} CoO ₃ . Angewandte Chemie - International Edition, 2019, 58, 11720-11725.	7.2	140
6	Sn–Ni ₃ S ₂ Ultrathin Nanosheets as Efficient Bifunctional Water-Splitting Catalysts with a Large Current Density and Low Overpotential. ACS Applied Materials & Interfaces, 2018, 10, 40568-40576.	4.0	113
7	Cobalt Nanoparticles/Black Phosphorus Nanosheets: An Efficient Catalyst for Electrochemical Oxygen Evolution. Advanced Science, 2018, 5, 1800575.	5.6	102
8	Hollowâ€ S tructured Metal Oxides as Oxygenâ€Related Catalysts. Advanced Materials, 2019, 31, e1801430.	11.1	99
9	Non-injection gram-scale synthesis of cesium lead halide perovskite quantum dots with controllable size and composition. Nano Research, 2016, 9, 1994-2006.	5.8	93
10	Rational design of NiFe LDH@Ni ₃ N nano/microsheet arrays as a bifunctional electrocatalyst for overall water splitting. Journal of Materials Chemistry A, 2020, 8, 17202-17211.	5.2	89
11	Charge Polarization from Atomic Metals on Adjacent Graphitic Layers for Enhancing the Hydrogen Evolution Reaction. Angewandte Chemie - International Edition, 2019, 58, 9404-9408.	7.2	87
12	Black Phosphorus-Modified Co ₃ O ₄ through Tuning the Electronic Structure for Enhanced Oxygen Evolution Reaction. ACS Applied Materials & Interfaces, 2019, 11, 17459-17466.	4.0	87
13	Engineering the surface of perovskite La _{0.5} Sr _{0.5} MnO ₃ for catalytic activity of CO oxidation. Chemical Communications, 2014, 50, 9200-9203.	2.2	84
14	Dualâ€Defects Adjusted Crystalâ€Field Splitting of LaCo _{1â^'<i>x</i>} Ni _{<i>x</i>} O _{3â^'<i>î^</i>} Hollow Multishelled Structures for Efficient Oxygen Evolution. Angewandte Chemie - International Edition, 2020, 59, 19691-19695	7.2	80
15	Interfacial Engineering of TiO ₂ /Ti ₃ C ₂ MXene/Carbon Nitride Hybrids Boosting Charge Transfer for Efficient Photocatalytic Hydrogen Evolution. Advanced Energy Materials, 2022, 12, .	10.2	80
16	Crystal facet tailoring arts in perovskite oxides. Inorganic Chemistry Frontiers, 2015, 2, 965-981.	3.0	78
17	A K ₂ Fe ₄ O ₇ superionic conductor for all-solid-state potassium metal batteries. Journal of Materials Chemistry A, 2018, 6, 8413-8418.	5.2	75
18	Activation of Surface Oxygen Sites in a Cobalt-Based Perovskite Model Catalyst for CO Oxidation. Journal of Physical Chemistry Letters, 2018, 9, 4146-4154.	2.1	67

#	Article	IF	CITATIONS
19	Unfolding BOB Bonds for an Enhanced ORR Performance in ABO ₃ â€Type Perovskites. Small, 2019, 15, e1803513.	5.2	67
20	Phaseâ€Reconfigurationâ€Induced NiS/NiFe ₂ O ₄ Composite for Performanceâ€Enhanced Zincâ^'Air Batteries. Advanced Materials, 2022, 34, e2110172.	11.1	67
21	Colloidal preparation and electrocatalytic hydrogen production of MoS2and WS2nanosheets with controllable lateral sizes and layer numbers. Nanoscale, 2016, 8, 15262-15272.	2.8	64
22	Downregulation of the long non-coding RNA TUG1 is associated with cell proliferation, migration, and invasion in breast cancer. Biomedicine and Pharmacotherapy, 2017, 95, 1636-1643.	2.5	64
23	Simple basic zirconium carbonate: low temperature catalysis for hydrogen transfer of biomass-derived carboxides. Green Chemistry, 2019, 21, 5969-5979.	4.6	61
24	Î^MnO ₂ –Mn ₃ O ₄ Nanocomposite for Photochemical Water Oxidation: Active Structure Stabilized in the Interface. ACS Applied Materials & Interfaces, 2016, 8, 27825-27831.	4.0	60
25	Electrochemical dopamine sensor based on superionic conducting potassium ferrite. Biosensors and Bioelectronics, 2020, 153, 112045.	5.3	59
26	Ni _x Fe _y N@C microsheet arrays on Ni foam as an efficient and durable electrocatalyst for electrolytic splitting of alkaline seawater. Journal of Materials Chemistry A, 2021, 9, 13562-13569.	5.2	54
27	Boosting oxygen evolution by surface nitrogen doping and oxygen vacancies in hierarchical NiCo/NiCoP hybrid nanocomposite. Electrochimica Acta, 2019, 296, 259-267.	2.6	48
28	Highly Efficient B-Site Exsolution Assisted by Co Doping in Lanthanum Ferrite toward High-Performance Electrocatalysts for Oxygen Evolution and Oxygen Reduction. ACS Sustainable Chemistry and Engineering, 2020, 8, 302-310.	3.2	48
29	Downregulation of the long non-coding RNA ZFAS1 is associated with cell proliferation, migration and invasion in breast cancer. Molecular Medicine Reports, 2018, 17, 6405-6412.	1.1	47
30	Cationâ€Exchangeâ€Induced Metal and Alloy Dualâ€Exsolution in Perovskite Ferrite Oxides Boosting the Performance of Liâ€O ₂ Battery. Angewandte Chemie - International Edition, 2021, 60, 23380-23387.	7.2	47
31	Large-scale synthesis of single-source, thermally stable, and dual-emissive Mn-doped Zn–Cu–In–S nanocrystals for bright white light-emitting diodes. Nano Research, 2015, 8, 3316-3331.	5.8	46
32	Molten Salt Flux Synthesis, Crystal Facet Design, Characterization, Electronic Structure, and Catalytic Properties of Perovskite Cobaltite. ACS Applied Materials & Interfaces, 2018, 10, 28219-28231.	4.0	46
33	Silver-Intermediated Perovskite La _{0.9} FeO _{3â[~]î[~]} toward High-Performance Cathode Catalysts for Nonaqueous Lithium–Oxygen Batteries. ACS Catalysis, 2019, 9, 11743-11752.	5.5	46
34	Engineering of Amorphous Structures and Sulfur Defects into Ultrathin FeS Nanosheets to Achieve Superior Electrocatalytic Alkaline Oxygen Evolution. ACS Applied Materials & Interfaces, 2020, 12, 51846-51853.	4.0	45
35	Color Tunable Selfâ€Trapped Emissions from Leadâ€Free All Inorganic IAâ€IB Bimetallic Halides Csâ€Agâ€X (X	: = Cl,) Ti ET(5.2	Qq1_1 0.7843
36	Tuning W ₁₈ O ₄₉ /Cu ₂ O{111} Interfaces for the Highly Selective CO ₂ Photocatalytic Conversion to CH ₄ . ACS Applied Materials & amp; Interfaces, 2020, 12, 35113-35119.	4.0	44

#	Article	IF	CITATIONS
37	Catalytic behavior of electrospinning synthesized La0.75Sr0.25MnO3 nanofibers in the oxidation of CO and CH4. Chemical Engineering Journal, 2014, 244, 27-32.	6.6	42
38	Phosphorus and Fluorine Coâ€Doping Induced Enhancement of Oxygen Evolution Reaction in Bimetallic Nitride Nanorods Arrays: Ionic Liquidâ€Driven and Mechanism Clarification. Chemistry - A European Journal, 2017, 23, 16862-16870.	1.7	41
39	Metal-ionic-conductor potassium ferrite nanocrystals with intrinsic superhydrophilic surfaces for electrocatalytic water splitting at ultrahigh current densities. Journal of Materials Chemistry A, 2021, 9, 7586-7593.	5.2	40
40	Hydrothermal synthesis and magnetic properties of REFe0.5Cr0.5O3 (RE = La, Tb, Ho, Er, Yb, Lu and Y) perovskite. New Journal of Chemistry, 2014, 38, 1168.	1.4	39
41	Nanoscale Architecture of RuO ₂ /La _{0.9} Fe _{0.92} Ru _{0.08–<i>x</i>} O _{3â[^]î} Composite via Manipulating the Exsolution of Low Ru-Substituted A-Site Deficient Perovskite. ACS Sustainable Chemistry and Engineering, 2018, 6, 11999-12005.	3.2	39
42	Magnetic Fe3O4 nanoparticles as easily separable catalysts for efficient catalytic transfer hydrogenation of biomass-derived furfural to furfuryl alcohol. Applied Catalysis A: General, 2020, 602, 117709.	2.2	39
43	Energetic multi-component molecular solids of tetrafluoroterephthalic acid with some aza compounds by strong hydrogen bonds and weak intermolecular interactions of C–H⋯F and C–H⋯O. CrystEngComm, 2014, 16, 4142-4161.	1.3	38
44	Enhanced CO catalytic oxidation by Sr reconstruction on the surface of La x Sr 1â^' x CoO 3â^' δ. Science Bulletin, 2017, 62, 658-664.	4.3	38
45	Highly Active PdNi/RGO/Polyoxometalate Nanocomposite Electrocatalyst for Alcohol Oxidation. Langmuir, 2018, 34, 2685-2691.	1.6	38
46	Defect Engineering, Electronic Structure, and Catalytic Properties of Perovskite Oxide La _{0.5} Sr _{0.5} CoO _{3â^'<i>δ</i>} . Chemistry - A European Journal, 2017, 23, 1093-1100.	1.7	37
47	Zn _x Cd _{1â~x} S/bacterial cellulose bionanocomposite foams with hierarchical architecture and enhanced visible-light photocatalytic hydrogen production activity. Journal of Materials Chemistry A, 2015, 3, 1709-1716.	5.2	36
48	Solar selective absorbers with foamed nanostructure prepared by hydrothermal method on stainless steel. Solar Energy Materials and Solar Cells, 2016, 146, 99-106.	3.0	36
49	MOF-derived hierarchical 3D bi-doped CoP nanoflower eletrocatalyst for hydrogen evolution reaction in both acidic and alkaline media. Chemical Communications, 2020, 56, 7702-7705.	2.2	36
50	Modulating Ti <i>t</i> _{2g} Orbital Occupancy in a Cu/TiO ₂ Composite for Selective Photocatalytic CO ₂ Reduction to CO. Angewandte Chemie - International Edition, 2022, 61, .	7.2	35
51	Quantification of Trace Organophosphorus Pesticides in Environmental Water via Enrichment by Magnetic-Zirconia Nanocomposites and Online Extractive Electrospray Ionization Mass Spectrometry. Analytical Chemistry, 2020, 92, 4137-4145.	3.2	34
52	Glycyrrhetinic acid nanoparticles combined with ferrotherapy for improved cancer immunotherapy. Acta Biomaterialia, 2022, 144, 109-120.	4.1	34
53	Fabrication of TiO ₂ /WO ₃ Composite Nanofibers by Electrospinning and Photocatalystic Performance of the Resultant Fabrics. Industrial & Engineering Chemistry Research, 2016, 55, 80-85.	1.8	33
54	Interfacial Electronic Structure Modulation of Hierarchical Co(OH)F/CuCo ₂ S ₄ Nanocatalyst for Enhanced Electrocatalysis and Zn–Air Batteries Performances. ACS Applied Materials & Interfaces, 2019, 11, 37531-37540.	4.0	33

#	Article	IF	CITATIONS
55	Structure, optical spectroscopy properties and thermochromism of Sm ₃ Fe ₅ O ₁₂ garnets. Journal of Materials Chemistry C, 2016, 4, 10529-10537.	2.7	32
56	Cation Segregation of A-Site Deficiency Perovskite La _{0.85} FeO _{3â^'î´} Nanoparticles toward High-Performance Cathode Catalysts for Rechargeable Li-O ₂ Battery. ACS Applied Materials & Interfaces, 2018, 10, 25465-25472.	4.0	31
57	Facile preparation of BiVO4/FeVO4 heterostructure for efficient water-splitting applications. International Journal of Hydrogen Energy, 2019, 44, 23046-23053.	3.8	30
58	Synthesis of Cu–Sb–S nanocrystals: insight into the mechanism of composition and crystal phase selection. CrystEngComm, 2016, 18, 3703-3710.	1.3	29
59	Optimized Co ²⁺ _(Td) –O–Fe ³⁺ _(Oh) electronic states in a spinel electrocatalyst for highly efficient oxygen evolution reaction performance. Inorganic Chemistry Frontiers, 2019, 6, 3295-3301.	3.0	29
60	Selective Oxidation of Benzylic C–H Bonds Catalyzed by Cu(II)/{PMo ₁₂ }. Journal of Organic Chemistry, 2020, 85, 3101-3109.	1.7	29
61	Optimizing the surface state of cobalt-iron bimetallic phosphide <i>via</i> regulating phosphorus vacancies. Chemical Communications, 2020, 56, 2602-2605.	2.2	29
62	Switching Optimally Balanced Fe–N Interaction Enables Extremely Stable Energy Storage. Energy and Environmental Materials, 2023, 6, .	7.3	29
63	Toward low friction in water for Mo2N/Ag coatings by tailoring the wettability. Applied Surface Science, 2018, 447, 886-893.	3.1	27
64	Solventâ€Free Synthesis and <i>n</i> â€Hexadecane Hydroisomerization Performance of SAPOâ€11 Catalyst. European Journal of Inorganic Chemistry, 2018, 2018, 2599-2606.	1.0	26
65	Atomicâ€Scale Insights into Surface Lattice Oxygen Activation at the Spinel/Perovskite interface of Co 3 O 4 /La 0.3 Sr 0.7 CoO 3. Angewandte Chemie, 2019, 131, 11846-11851.	1.6	26
66	Jahn–Teller Disproportionation Induced Exfoliation of Unit ell Scale ϵâ€MnO ₂ . Angewandte Chemie - International Edition, 2020, 59, 22659-22666.	7.2	26
67	Constructed Interfacial Oxygenâ€Bridge Chemical Bonding in Coreâ€5hell Transition Metal Phosphides/Carbon Hybrid Boosting Oxygen Evolution Reaction. ChemSusChem, 2021, 14, 2188-2197.	3.6	26
68	Crystal facet control of LaFeO3, LaCrO3, and La0.75Sr0.25MnO3. CrystEngComm, 2014, 16, 2874.	1.3	25
69	In-situ optical and structural insight of reversible thermochromic materials of Sm3-xBixFe5O12 (x= 0,) Tj ETQq1	l 0,78431 2.0	4 rgBT /Over
70	Exsolution manipulated local surface cobalt/iron alloying and dealloying conversion in LaO·95FeO·8CoO·2O3 perovskite for oxygen evolution reaction. Journal of Alloys and Compounds, 2021, 854, 157154.	2.8	24
71	Single-phase dual emissive Cu:CdS–ZnSe core–shell nanocrystals with "zero self-absorption―and their application in white light emitting diodes. Journal of Materials Chemistry C, 2015, 3, 3614-3622.	2.7	23
72	Enhanced solar water-splitting activity of novel nanostructured Fe ₂ TiO ₅ photoanode by electrospray and surface F-modification. Nanoscale, 2018, 10, 6678-6683.	2.8	23

#	Article	IF	CITATIONS
73	In Situ Growth of Amorphous NiFe Hydroxides on Spinel NiFe ₂ O ₄ via Ultrasonic-Assisted Reduction for an Enhanced Oxygen Evolution Reaction. ACS Sustainable Chemistry and Engineering, 2020, 8, 17194-17200.	3.2	23
74	Selective Enrichment of Phosphopeptides and Phospholipids from Biological Matrixes on TiO ₂ Nanowire Arrays for Direct Molecular Characterization by Internal Extractive Electrospray Ionization Mass Spectrometry. Analytical Chemistry, 2018, 90, 12101-12107.	3.2	22
75	Direct growth of NiCo2O4 nanostructure on conductive substrate by electrospray technique for oxygen evolution reaction. Journal of Alloys and Compounds, 2018, 752, 389-394.	2.8	21
76	Low-temperature hydrothermal fabrication of Fe3O4 nanostructured solar selective absorption films. Applied Surface Science, 2018, 458, 629-637.	3.1	21
77	Hydrogen-bonding patterns in a series of multi-component molecular solids formed by 2,3,5,6-tetramethylpyrazine with selected carboxylic acids. CrystEngComm, 2014, 16, 7074-7089.	1.3	20
78	Sequential Detection of Lipids, Metabolites, and Proteins in One Tissue for Improved Cancer Differentiation Accuracy. Analytical Chemistry, 2019, 91, 10532-10540.	3.2	20
79	Design and syntheses of hybrid supramolecular architectures: based on [Fe(C ₂ O ₄) ₃]3 <up>3â^² metallotectons and diverse organic cations. CrystEngComm, 2014, 16, 5437-5449.</up>	1.3	19
80	Influence of controlled Pd nanoparticles decorated TiO2 nanowire arrays for efficient photoelectrochemical water splitting. Journal of Alloys and Compounds, 2019, 785, 391-397.	2.8	19
81	Self-construction of Magnetic Hollow La _{0.7} Sr _{0.3} MnO ₃ Microspheres with Complex Units. Inorganic Chemistry, 2013, 52, 4130-4132.	1.9	18
82	Enhanced photoelectrochemical activity of nanostructured ZnFe ₂ O ₄ thin films prepared by the electrospray technique. CrystEngComm, 2017, 19, 772-775.	1.3	17
83	Internal Extractive Electrospray Ionization Mass Spectrometry for Quantitative Determination of Fluoroquinolones Captured by Magnetic Molecularly Imprinted Polymers from Raw Milk. Scientific Reports, 2017, 7, 14714.	1.6	17
84	The effect of NH ₄ ⁺ on shape modulation of La _{1â^'x} Sr _x MnO ₃ crystals in a hydrothermal environment. CrystEngComm, 2014, 16, 9842-9846.	1.3	16
85	<i>In situ</i> exsolution of Ag from AgBiS ₂ nanocrystal anode boosting high-performance potassium-ion batteries. Journal of Materials Chemistry A, 2020, 8, 15058-15065.	5.2	16
86	Boosting the electrocatalytic performance of ultrathin NiP2 nanosheets by synergic effect of W and Ru doping engineering. Applied Surface Science, 2020, 508, 145302.	3.1	16
87	Design Principles for 3d Electron Transfer in a Ga-Based Garnet To Enable High-Performance Reversible Thermochromic Material Color Maps. Chemistry of Materials, 2019, 31, 1048-1056.	3.2	15
88	Catalytic transfer hydrogenation of furfural to furfuryl alcohol using easy-to-separate core–shell magnetic zirconium hydroxide. New Journal of Chemistry, 2021, 45, 2715-2722.	1.4	15
89	Green catalyst: magnetic La _{0.7} Sr _{0.3} MnO ₃ hollow microspheres. New Journal of Chemistry, 2015, 39, 2413-2416.	1.4	14
90	Architecture of Biomimetic Water Oxidation Catalyst with Mn ₄ CaO ₅ Clusterlike Structure Unit. ACS Applied Materials & Interfaces, 2018, 10, 37948-37954.	4.0	14

#	Article	IF	CITATIONS
91	Selective detection of phospholipids in human blood plasma and single cells for cancer differentiation using dispersed solid-phase microextraction combined with extractive electrospray ionization mass spectrometry. Analyst, The, 2020, 145, 7330-7339.	1.7	14
92	Dual-modulation of electronic structure and active sites of PtCu nanodendrites by surface nitridation to achieve efficient methanol electrooxidation and oxygen reduction reaction. Chemical Communications, 2020, 56, 7136-7139.	2.2	14
93	Enrichment of phospholipids using magnetic Fe3O4/TiO2 nanoparticles for quantitative detection at single cell levels by electrospray ionization mass spectrometry. Talanta, 2020, 212, 120769.	2.9	13
94	Ultra-small nickel phosphide nanoparticles as a high-performance electrocatalyst for the hydrogen evolution reaction. RSC Advances, 2016, 6, 74895-74902.	1.7	12
95	Hydrothermal shape controllable synthesis of La _{0.5} Sr _{0.5} MnO ₃ crystals and facet effect on electron transfer of oxygen reduction. Inorganic Chemistry Frontiers, 2018, 5, 732-738.	3.0	12
96	Environmentally friendly, aqueous processed ZnO as an efficient electron transport layer for low temperature processed metal–halide perovskite photovoltaics. Inorganic Chemistry Frontiers, 2018, 5, 84-89.	3.0	12
97	A Co(OH) _x nanolayer integrated planar WO ₃ /Fe ₂ O ₃ photoanode for efficient photoelectrochemical water splitting. Sustainable Energy and Fuels, 2019, 3, 2135-2141.	2.5	12
98	Zero-dimensional plate-shaped copper halide crystals with green-yellow emissions. Materials Advances, 2021, 2, 3744-3751.	2.6	12
99	The Synergistic Effect of Oxygen Vacancy and Carbon Interface Engineering in Hollow Cerium Oxide to Achieve Enhanced Oxygen Reduction Performance. ACS Applied Energy Materials, 2021, 4, 5339-5347.	2.5	12
100	Controlled Crystallization of Sodium Chloride Nanocrystals in MicrodropÂłets Produced by Electrospray from an Ultraâ€Đilute Solution. European Journal of Inorganic Chemistry, 2016, 2016, 1860-1865.	1.0	11
101	Shape Control of Ternary Sulfide Nanocrystals. Crystal Growth and Design, 2018, 18, 864-871.	1.4	11
102	Enhancement of Fe2TiO5 Photoanode through Surface Al3+ Treatment and FeOOH Modification. ACS Sustainable Chemistry and Engineering, 2019, 7, 14347-14352.	3.2	11
103	Interfacial electronic structure and electrocatalytic performance modulation in Cu0.81Ni0.19 nanoflowers by heteroatom doping engineering using ionic liquid dopant. Applied Surface Science, 2020, 500, 144052.	3.1	11
104	Reversible thermochromic property of Cr, Mn, Fe, Co-doped Ca ₁₄ Zn ₆ Ga ₁₀ O ₃₅ . Journal of Materials Chemistry C, 2020, 8, 9615-9624.	2.7	11
105	Cationâ€Exchangeâ€Induced Metal and Alloy Dualâ€Exsolution in Perovskite Ferrite Oxides Boosting the Performance of Liâ€O ₂ Battery. Angewandte Chemie, 2021, 133, 23568-23575.	1.6	11
106	Luminescent properties of LaKNaTaO5 and rare-earth-doped LaKNaTaO5 synthesized by an improved hydroxide melt method. Journal of Luminescence, 2013, 135, 196-200.	1.5	10
107	Bandgap―and Radialâ€Positionâ€Dependent Mnâ€Doped Zn–Cu–In–S/ZnS Core/Shell Nanocrystals. ChemPhysChem, 2016, 17, 752-758.	1.0	10
108	Electrocatalysts: A Facile Strategy to Construct Amorphous Spinel-Based Electrocatalysts with Massive Oxygen Vacancies Using Ionic Liquid Dopant (Adv. Energy Mater. 27/2018). Advanced Energy Materials, 2018, 8, 1870121.	10.2	10

#	Article	IF	CITATIONS
109	Charge Polarization from Atomic Metals on Adjacent Graphitic Layers for Enhancing the Hydrogen Evolution Reaction. Angewandte Chemie, 2019, 131, 9504-9508.	1.6	10
110	Fast Determination of Ingredients in Solid Pharmaceuticals by Microwave-Enhanced In-Source Decay of Microwave Plasma Torch Mass Spectrometry. Journal of the American Society for Mass Spectrometry, 2017, 28, 1947-1957.	1.2	9
111	Phaseâ€Controlled Synthesis of Highâ€Biâ€Ratio Ternary Sulfide Nanocrystals of Cu _{1.57} Bi _{4.57} S ₈ and Cu _{2.93} Bi _{4.89} S ₉ . ChemPlusChem, 2018, 83, 812-818.	1.3	9
112	Engineering Cu ₂ O/Cu@CoO hierarchical nanospheres: synergetic effect of fast charge transfer cores and active shells for enhanced oxygen evolution reaction. Inorganic Chemistry Frontiers, 2019, 6, 1660-1666.	3.0	9
113	Stabilizing black phosphorus <i>via</i> inorganic small-molecular H ₃ BO ₃ . Chemical Communications, 2020, 56, 11418-11421.	2.2	9
114	Direct quantitative profiling of amino acids in tissues for the assessment of lung cancer. Talanta, 2021, 233, 122544.	2.9	9
115	Electron transfer in Cu/Cu2O generated by disproportionation promoting efficient CO2 photoreduction. Nano Research, 0, , .	5.8	9
116	The direct synthesis of Au nanocrystals in microdroplets using the spray-assisted method. New Journal of Chemistry, 2016, 40, 7294-7298.	1.4	8
117	Electric-field-induced assembly of Ag nanoparticles on a CuO nanowire using ambient electrospray ionization. New Journal of Chemistry, 2017, 41, 2878-2882.	1.4	8
118	White light emission and fluorescence enhancement of rare earth RE3+ (Tb, Eu, Dy) doped CeF3 nanoparticles. Journal of Luminescence, 2022, 242, 118535.	1.5	8
119	Electrophysiological measurement at Erb's point during the early stage of Guillain-Barré syndrome. Journal of Clinical Neuroscience, 2014, 21, 786-789.	0.8	7
120	Coupling NiFe-MOF nanosheets with Ni ₃ N microsheet arrays for efficient electrocatalytic water oxidation. New Journal of Chemistry, 2021, 45, 19646-19650.	1.4	7
121	Soft-Chemical Method for Synthesizing Intermetallic Antimonide Nanocrystals from Ternary Chalcogenide. Langmuir, 2019, 35, 15131-15136.	1.6	6
122	A dendrite-free and stable anode for high-performance Li–O ₂ batteries by prestoring Li in reduced graphene oxide coated three-dimensional nickel foam. Chemical Communications, 2020, 56, 7645-7648.	2.2	6
123	Programmable Structure Control in Cigarlike TiO ₂ Nanofibers and UV-Light Photocatalysis Performance of Resultant Fabrics. Industrial & Engineering Chemistry Research, 2016, 55, 8292-8298.	1.8	5
124	Differentiation of cultivation areas and crop years of milled rice using single grain mass spectrometry. New Journal of Chemistry, 2019, 43, 2118-2125.	1.4	5
125	Dualâ€Ðefects Adjusted Crystalâ€Field Splitting of LaCo _{1â^'<i>x</i>} Ni _{<i>x</i>} O _{3â^'<i>î´</i>} Hollow Multishelled Structures for Efficient Oxygen Evolution. Angewandte Chemie, 2020, 132, 19859-19863.	1.6	5
126	Accurate quantification of creatinine in serum by coupling a measurement standard to extractive electrospray ionization mass spectrometry. Scientific Reports, 2016, 6, 19283.	1.6	4

#	Article	IF	CITATIONS
127	Synergy of facet control and surface metalloid modification on hierarchical Pt–Ni nanoroses toward high electrocatalytic activity. CrystEngComm, 2017, 19, 4964-4971.	1.3	4
128	Jahn–Teller Disproportionation Induced Exfoliation of Unit ell Scale ϵâ€MnO 2. Angewandte Chemie, 2020, 132, 22848-22855.	1.6	4
129	Cubic Ba2LaF7:Yb3+/Ln(Ln = Er3+,Ho3+) up-conversion submicron particles controllable synthesis and luminescence properties. Journal of Materials Science: Materials in Electronics, 2021, 32, 24856-24870.	1.1	3
130	Effect of processing temperature on film properties of ZnO prepared by the aqueous method and related organic photovoltaics and LEDs. Inorganic Chemistry Frontiers, 2020, 7, 2809-2817.	3.0	2
131	Thermochemical Mechanism of Optimized Lanthanum Chromite Heaters for High-Pressure and High-Temperature Experiments. ACS Applied Materials & Interfaces, 2022, 14, 32244-32252.	4.0	2
132	Rapid Ultrasoundâ€Assisted Synthesis of Mesoporous Manganese Oxides for Low oncentration NO Elimination with Superior Waterâ€Resistance. European Journal of Inorganic Chemistry, 2017, 2017, 2573-2579.	1.0	1
133	Modulating Ti <i>t</i> _{2g} Orbital Occupancy in a Cu/TiO ₂ Composite for Selective Photocatalytic CO ₂ Reduction to CO. Angewandte Chemie, 0, , .	1.6	1
134	Hydrothermal Growth of Centimeter-Scale CuO Plates: Planar Chromium(III) Oligomer as a Facet-Directing Agent. Inorganic Chemistry, 2018, 57, 2957-2960.	1.9	0