
Changyan Tian

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6699545/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Effects of salinity and nitrate on production and germination of dimorphic seeds applied both through the mother plant and exogenously during germination in <i><scp>S</scp>uaeda salsa</i> . Plant Species Biology, 2016, 31, 19-28.	1.0	92
2	No significant nitrous oxide emissions during spring thaw under grazing and nitrogen addition in an alpine grassland. Global Change Biology, 2012, 18, 2546-2554.	9.5	59
3	Anaerobic Nitrate-Dependent Iron (II) Oxidation by a Novel Autotrophic Bacterium, <i>Citrobacter freundii</i> Strain PXL1. Geomicrobiology Journal, 2014, 31, 138-144.	2.0	59
4	Effects of drought and salt-stresses on gene expression in Caragana korshinskii seedlings revealed by RNA-seq. BMC Genomics, 2016, 17, 200.	2.8	47
5	Effects of NO 3 â^ -N on the growth and salinity tolerance of Tamarix laxa Willd. Plant and Soil, 2010, 331, 57-67.	3.7	38
6	Change in pan evaporation over the past 50 years in the arid region of China. Hydrological Processes, 2010, 24, 225-231.	2.6	37
7	Contrasting diurnal variations in soil organic carbon decomposition and root respiration due to a hysteresis effect with soil temperature in a Gossypium s. (cotton) plantation. Plant and Soil, 2011, 343, 347-355.	3.7	27
8	Ability of multicellular salt glands in Tamarix species to secrete Na+ and K+ selectively. Science China Life Sciences, 2011, 54, 282-289.	4.9	26
9	Heavy metal tolerance and potential for remediation of heavy metal-contaminated saline soils for the euhalophyte <i>Suaeda salsa</i> . Plant Signaling and Behavior, 2020, 15, 1805902.	2.4	26
10	A draft genome assembly of halophyte Suaeda aralocaspica, a plant that performs C4 photosynthesis within individual cells. GigaScience, 2019, 8, .	6.4	23
11	Evaluation of ecological sensitivity in Karamay, Xinjiang, China. Journal of Chinese Geography, 2012, 22, 329-345.	3.9	22
12	Effects of vertebral number variations on carcass traits and genotyping of Vertnin candidate gene in Kazakh sheep. Asian-Australasian Journal of Animal Sciences, 2017, 30, 1234-1238.	2.4	21
13	Greenhouse gas intensity and net annual global warming potential of cotton cropping systems in an extremely arid region. Nutrient Cycling in Agroecosystems, 2014, 98, 15-26.	2.2	20
14	On-site growth response of a desert ephemeral plant, Plantago minuta, to indigenous arbuscular mycorrhizal fungi in a central Asia desert. Symbiosis, 2011, 55, 77-84.	2.3	19
15	Empirical models of calculating phreatic evaporation from bare soil in Tarim river basin, Xinjiang. Environmental Earth Sciences, 2009, 59, 663-668.	2.7	18
16	Subcellular distribution and chemical forms of lithium in Li-accumulator Apocynum venetum. Plant Physiology and Biochemistry, 2018, 132, 341-344.	5.8	18
17	Suitable scale of Weigan River plain oasis. Science in China Series D: Earth Sciences, 2007, 50, 56-64.	0.9	17
18	Lithium biofortification of medicinal tea Apocynum venetum. Scientific Reports, 2019, 9, 8182.	3.3	17

CHANGYAN TIAN

#	Article	IF	CITATIONS
19	Soil Salinity Dynamics under Drip Irrigation and Mulch Film and Their Effects on Cotton Root Length. Communications in Soil Science and Plant Analysis, 2013, 44, 1489-1502.	1.4	16
20	Characteristics of mineral elements in shoots of three annual halophytes in a saline desert, Northern Xinjiang. Journal of Arid Land, 2013, 5, 244-254.	2.3	13
21	Diversity of arbuscular mycorrhizal fungi associated with desert ephemerals growing under and beyond the canopies of Tamarisk shrubs. Science Bulletin, 2006, 51, 132-139.	1.7	11
22	Localized salt accumulation: the main reason for cotton root length decrease during advanced growth stages under drip irrigation with mulch film in a saline soil. Journal of Arid Land, 2014, 6, 361-370.	2.3	11
23	Root Morphology and Rhizosphere Characteristics Are Related to Salt Tolerance of Suaeda salsa and Beta vulgaris L Frontiers in Plant Science, 2021, 12, 677767.	3.6	11
24	Tolerance and accumulation of lithium in <i>Apocynum pictum</i> Schrenk. PeerJ, 2018, 6, e5559.	2.0	11
25	Soil moisture threshold in controlling above- and belowground community stability in a temperate desert of Central Asia. Science of the Total Environment, 2020, 703, 134650.	8.0	10
26	Theoretical analysis of the limiting rate of phreatic evaporation for aeolian sandy soil in Taklimakan Desert. Science Bulletin, 2008, 53, 119-124.	9.0	9
27	Increasing phosphorus concentration in the extraradical hyphae of Rhizophagus irregularis DAOM 197198 leads to a concomitant increase in metal minerals. Mycorrhiza, 2016, 26, 909-918.	2.8	9
28	Characteristics of soil seed banks at different geomorphic positions within the longitudinal sand dunes of the Gurbantunggut Desert, China. Journal of Arid Land, 2017, 9, 355-367.	2.3	9
29	Simultaneously maximizing root/mycorrhizal growth and phosphorus uptake by cotton plants by optimizing water and phosphorus management. BMC Plant Biology, 2018, 18, 334.	3.6	9
30	Models for calculating phreatic water evaporation on bare and Tamarix-vegetated lands. Science Bulletin, 2006, 51, 43-50.	1.7	8
31	Characteristics and dynamics of the soil seed bank at the north edge of Taklimakan Desert. Science in China Series D: Earth Sciences, 2007, 50, 122-127.	0.9	8
32	Biological mechanism of controlling cotton aphid (Homoptera: aphididae) by the marginal alfalfa zone surrounding cotton field. Science Bulletin, 2000, 45, 355-358.	1.7	7
33	Maternal effects on seed heteromorphism: a dual dynamic bet hedging strategy. Seed Science Research, 2019, 29, 149-153.	1.7	7
34	Arbuscular mycorrhizal associations in the Gurbantunggut Desert. Science Bulletin, 2006, 51, 140-146.	1.7	6
35	Crop yields and soil organic carbon dynamics in a long-term fertilization experiment in an extremely arid region of northern Xinjiang, China. Journal of Arid Land, 2017, 9, 345-354.	2.3	6
36	Storage Period and Different Abiotic Factors Regulate Seed Germination of Two Apocynum Species — Cash Crops in Arid Saline Regions in the Northwestern China. Frontiers in Plant Science, 2021, 12, 671157.	3.6	6

CHANGYAN TIAN

#	Article	IF	CITATIONS
37	The Effects of Suaeda salsa/Zea mays L. Intercropping on Plant Growth and Soil Chemical Characteristics in Saline Soil. Agriculture (Switzerland), 2022, 12, 107.	3.1	6
38	Highly Arid Oasis Yield, Soil Mineral N Accumulation and N Balance in a Wheat-Cotton Rotation with Drip Irrigation and Mulching Film Management. PLoS ONE, 2016, 11, e0165404.	2.5	5
39	Salinity relief aniline induced oxidative stress in Suaeda salsa: Activities of antioxidative enzyme and EPR measurements. Ecotoxicology and Environmental Safety, 2020, 205, 111293.	6.0	5
40	NaCl Improves Suaeda salsa Aniline Tolerance in Wastewater. Sustainability, 2020, 12, 7457.	3.2	5
41	Diversity and zonal distribution of arbuscular mycorrhizal fungi on the northern slopes of the Tianshan Mountains. Science in China Series D: Earth Sciences, 2007, 50, 135-141.	0.9	4
42	The role of tamarisk in the spatial heterogeneity of soil resources in the northern Tarim Basin, Xinjiang, China. Plant and Soil, 2017, 420, 523-538.	3.7	4
43	Comparison of Efficiency-Enhanced Management and Conventional Management of Irrigation and Nitrogen Fertilization in Cotton Fields of Northwestern China. Agriculture (Switzerland), 2021, 11, 1134.	3.1	4
44	Current situation and potential development of China's environmental management at the rural–urban interface. International Journal of Sustainable Development and World Ecology, 2011, 18, 265-271.	5.9	3
45	Transgenerational Effects of Maternal Water Condition on the Growth, C:N Stoichiometry and Seed Characteristics of the Desert Annual Atriplex aucheri. Plants, 2021, 10, 2362.	3.5	3
46	Large-scale de novo transcriptome analysis reveals specific gene expression and novel simple sequence repeats markers in salinized roots of the euhalophyte Salicornia europaea. Acta Physiologiae Plantarum, 2018, 40, 1.	2.1	2
47	Nitrogen Removal Efficiency and Microbial Community Analysis of a High-Efficiency Honeycomb Fixed-Bed Bioreactor. Water (Switzerland), 2020, 12, 1832.	2.7	2
48	Does cotton bollworm show cross-resistance to the Bacillus thuringiensis toxins Cry1Ac and Cry2Ab? A mini review. Journal of Arid Land, 2020, 12, 349-356.	2.3	2
49	Elevated CO2 increases shoot growth but not root growth and C:N:P stoichiometry of Suaeda aralocaspica plants. Journal of Arid Land, 2021, 13, 1155-1162.	2.3	1