
Rafal Bogacz

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6699441/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	PAX-D: study protocol for a randomised placebo-controlled trial evaluating the efficacy and mechanism of pramipexole as add-on treatment for people with treatment resistant depression. Evidence-Based Mental Health, 2022, 25, 77-83.	2.2	4
2	A Normative Account of Confirmation Bias During Reinforcement Learning. Neural Computation, 2022, 34, 307-337.	1.3	17
3	Conflict Detection in a Sequential Decision Task Is Associated with Increased Cortico-Subthalamic Coherence and Prolonged Subthalamic Oscillatory Response in the β Band. Journal of Neuroscience, 2022, 42, 4681-4692.	1.7	2
4	Uncertainty–guided learning with scaled prediction errors in the basal ganglia. PLoS Computational Biology, 2022, 18, e1009816.	1.5	4
5	Predictive Coding: Towards a Future of Deep Learning beyond Backpropagation?. , 2022, , .		8
6	Optimizing deep brain stimulation based on isostable amplitude in essential tremor patient models. Journal of Neural Engineering, 2021, 18, 046023.	1.8	9
7	Average beta burst duration profiles provide a signature of dynamical changes between the ON and OFF medication states in Parkinson's disease. PLoS Computational Biology, 2021, 17, e1009116.	1.5	28
8	An association between prediction errors and risk-seeking: Theory and behavioral evidence. PLoS Computational Biology, 2021, 17, e1009213.	1.5	11
9	Neural signatures of hyperdirect pathway activity in Parkinson's disease. Nature Communications, 2021, 12, 5185.	5.8	65
10	Optimal closed-loop deep brain stimulation using multiple independently controlled contacts. PLoS Computational Biology, 2021, 17, e1009281.	1.5	13
11	Case Report: Embedding "Digital Chronotherapy―Into Medical Devices—A Canine Validation for Controlling Status Epilepticus Through Multi-Scale Rhythmic Brain Stimulation. Frontiers in Neuroscience, 2021, 15, 734265.	1.4	28
12	Hunger improves reinforcement-driven but not planned action. Cognitive, Affective and Behavioral Neuroscience, 2021, 21, 1196-1206.	1.0	3
13	Modeling the effects of motivation on choice and learning in the basal ganglia. PLoS Computational Biology, 2020, 16, e1007465.	1.5	16
14	Phase-dependence of response curves to deep brain stimulation and their relationship: from essential tremor patient data to a Wilson–Cowan model. Journal of Mathematical Neuroscience, 2020, 10, 4.	2.4	27
15	Dopamine role in learning and action inference. ELife, 2020, 9, .	2.8	34
16	Can the Brain Do Backpropagation? -Exact Implementation of Backpropagation in Predictive Coding Networks. Advances in Neural Information Processing Systems, 2020, 33, 22566-22579.	2.8	5
17	A deep learning framework for neuroscience. Nature Neuroscience, 2019, 22, 1761-1770.	7.1	563
18	Predicting the effects of deep brain stimulation using a reduced coupled oscillator model. PLoS Computational Biology, 2019, 15, e1006575.	1.5	41

#	Article	IF	CITATIONS
19	Theories of Error Back-Propagation in the Brain. Trends in Cognitive Sciences, 2019, 23, 235-250.	4.0	247
20	Learning the payoffs and costs of actions. PLoS Computational Biology, 2019, 15, e1006285.	1.5	26
21	Deep Brain Stimulation of the Subthalamic Nucleus Does Not Affect the Decrease of Decision Threshold during the Choice Process When There Is No Conflict, Time Pressure, or Reward. Journal of Cognitive Neuroscience, 2018, 30, 876-884.	1.1	7
22	Mechanisms Underlying Decision-Making as Revealed by Deep-Brain Stimulation in Patients with Parkinson's Disease. Current Biology, 2018, 28, 1169-1178.e6.	1.8	66
23	Dendritic Integration of Sensory Evidence in Perceptual Decision-Making. Cell, 2018, 173, 894-905.e13.	13.5	55
24	Time-varying decision boundaries: insights from optimality analysis. Psychonomic Bulletin and Review, 2018, 25, 971-996.	1.4	52
25	Predicting beta bursts from local field potentials to improve closed-loop DBS paradigms in Parkinson's patients. , 2018, 2018, 3766-3796.		18
26	Selective Effects of the Loss of NMDA or mGluR5 Receptors in the Reward System on Adaptive Decision-Making. ENeuro, 2018, 5, ENEURO.0331-18.2018.	0.9	11
27	A tutorial on the free-energy framework for modelling perception and learning. Journal of Mathematical Psychology, 2017, 76, 198-211.	1.0	178
28	An Approximation of the Error Backpropagation Algorithm in a Predictive Coding Network with Local Hebbian Synaptic Plasticity. Neural Computation, 2017, 29, 1229-1262.	1.3	117
29	Neural Circuits Trained with Standard Reinforcement Learning Can Accumulate Probabilistic Information during Decision Making. Neural Computation, 2017, 29, 368-393.	1.3	2
30	Effects of dopamine on reinforcement learning and consolidation in Parkinson's disease. ELife, 2017, 6,	2.8	52
31	Overcoming indecision by changing the decision boundary Journal of Experimental Psychology: General, 2017, 146, 776-805.	1.5	38
32	Learning Reward Uncertainty in the Basal Ganglia. PLoS Computational Biology, 2016, 12, e1005062.	1.5	74
33	Neuroscience: Impaired Decision-Making in Parkinson's Disease. Current Biology, 2016, 26, R671-R673.	1.8	17
34	Action initiation shapes mesolimbic dopamine encoding of future rewards. Nature Neuroscience, 2016, 19, 34-36.	7.1	177
35	Neural Correlates of Decision Thresholds in the Human Subthalamic Nucleus. Current Biology, 2016, 26, 916-920.	1.8	127
36	Properties of Neurons in External Globus Pallidus Can Support Optimal Action Selection. PLoS Computational Biology, 2016, 12, e1005004.	1.5	30

#	Article	IF	CITATIONS
37	The subthalamic nucleus during decisionâ€making with multiple alternatives. Human Brain Mapping, 2015, 36, 4041-4052.	1.9	31
38	Computational Models Describing Possible Mechanisms for Generation of Excessive Beta Oscillations in Parkinson's Disease. PLoS Computational Biology, 2015, 11, e1004609.	1,5	133
39	Dopamine and Consolidation of Episodic Memory: Timing Is Everything. Journal of Cognitive Neuroscience, 2015, 27, 2035-2050.	1.1	21
40	Distinct Developmental Origins Manifest in the Specialized Encoding of Movement by Adult Neurons of the External Globus Pallidus. Neuron, 2015, 86, 501-513.	3.8	127
41	A Canonical Circuit for Generating Phase-Amplitude Coupling. PLoS ONE, 2014, 9, e102591.	1.1	68
42	Computational modeling and analysis of hippocampal-prefrontal information coding during a spatial decision-making task. Frontiers in Behavioral Neuroscience, 2014, 8, 62.	1.0	6
43	Effective connectivity of the subthalamic nucleus–globus pallidus network during Parkinsonian oscillations. Journal of Physiology, 2014, 592, 1429-1455.	1.3	84
44	Deep Brain Stimulation Abolishes Slowing of Reactions to Unlikely Stimuli. Journal of Neuroscience, 2014, 34, 10844-10852.	1.7	22
45	Reduction of Influence of Task Difficulty on Perceptual Decision Making by STN Deep Brain Stimulation. Current Biology, 2013, 23, 1681-1684.	1.8	66
46	Adaptive Sampling of Information in Perceptual Decision-Making. PLoS ONE, 2013, 8, e78993.	1.1	18
47	Distinct roles of dopamine and subthalamic nucleus in learning and probabilistic decision making. Brain, 2012, 135, 3721-3734.	3.7	73
48	Learning to use working memory: a reinforcement learning gating model of rule acquisition in rats. Frontiers in Computational Neuroscience, 2012, 6, 87.	1.2	16
49	Improved conditions for the generation of beta oscillations in the subthalamic nucleus–globus pallidus network. European Journal of Neuroscience, 2012, 36, 2229-2239.	1.2	75
50	Dysfunctional Prefrontal Cortical Network Activity and Interactions following Cannabinoid Receptor Activation. Journal of Neuroscience, 2011, 31, 15560-15568.	1.7	58
51	Toward a Science of Learning Games. Mind, Brain, and Education, 2011, 5, 33-41.	0.9	42
52	Quantifying phase–amplitude coupling in neuronal network oscillations. Progress in Biophysics and Molecular Biology, 2011, 105, 49-57.	1.4	116
53	An Infomax Algorithm Can Perform Both Familiarity Discrimination and Feature Extraction in a Single Network. Neural Computation, 2011, 23, 909-926.	1.3	27
54	Bifurcation analysis points towards the source of beta neuronal oscillations in Parkinson's disease. , 2011, , .		5

#	Article	IF	CITATIONS
55	Integration of Reinforcement Learning and Optimal Decision-Making Theories of the Basal Ganglia. Neural Computation, 2011, 23, 817-851.	1.3	72
56	THE PHYSICS OF DECISION MAKING: STOCHASTIC DIFFERENTIAL EQUATIONS AS MODELS FOR NEURAL DYNAMICS AND EVIDENCE ACCUMULATION IN CORTICAL CIRCUITS. , 2010, , .		1
57	Bounded Ornstein–Uhlenbeck models for two-choice time controlled tasks. Journal of Mathematical Psychology, 2010, 54, 322-333.	1.0	14
58	Conditions for the Generation of Beta Oscillations in the Subthalamic Nucleus–Globus Pallidus Network. Journal of Neuroscience, 2010, 30, 12340-12352.	1.7	232
59	Cortico-striatal connections predict control over speed and accuracy in perceptual decision making. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 15916-15920.	3.3	332
60	Posterior Weighted Reinforcement Learning with State Uncertainty. Neural Computation, 2010, 22, 1149-1179.	1.3	13
61	Optimal Decision Making on the Basis of Evidence Represented in Spike Trains. Neural Computation, 2010, 22, 1113-1148.	1.3	25
62	The neural mechanisms of learning from competitors. NeuroImage, 2010, 53, 790-799.	2.1	27
63	The neural basis of the speed–accuracy tradeoff. Trends in Neurosciences, 2010, 33, 10-16.	4.2	574
64	A comparison of bounded diffusion models for choice in time controlled tasks. Journal of Mathematical Psychology, 2009, 53, 231-241.	1.0	17
65	On optimal decision-making in brains and social insect colonies. Journal of the Royal Society Interface, 2009, 6, 1065-1074.	1.5	202
66	Computational models can replicate the capacity of human recognition memory. Network: Computation in Neural Systems, 2008, 19, 161-182.	2.2	17
67	Mammalian choices: combining fast-but-inaccurate and slow-but-accurate decision-making systems. Proceedings of the Royal Society B: Biological Sciences, 2008, 275, 2353-2361.	1.2	105
68	Extending a biologically inspired model of choice: multi-alternatives, nonlinearity and value-based multidimensional choice. Philosophical Transactions of the Royal Society B: Biological Sciences, 2007, 362, 1655-1670.	1.8	161
69	The Basal Ganglia and Cortex Implement Optimal Decision Making Between Alternative Actions. Neural Computation, 2007, 19, 442-477.	1.3	338
70	Optimal decision-making theories: linking neurobiology with behaviour. Trends in Cognitive Sciences, 2007, 11, 118-125.	4.0	317
71	Optimal decision network with distributed representation. Neural Networks, 2007, 20, 564-576.	3.3	9
72	Short-term memory traces for action bias in human reinforcement learning. Brain Research, 2007, 1153, 111-121.	1.1	65

#	Article	IF	CITATIONS
73	The physics of optimal decision making: A formal analysis of models of performance in two-alternative forced-choice tasks Psychological Review, 2006, 113, 700-765.	2.7	1,426
74	SIMPLE NEURAL NETWORKS THAT OPTIMIZE DECISIONS. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 2005, 15, 803-826.	0.7	81
75	Comparison of computational models of familiarity discrimination in the perirhinal cortex. Hippocampus, 2003, 13, 494-524.	0.9	106
76	The restricted influence of sparseness of coding on the capacity of familiarity discrimination networks. Network: Computation in Neural Systems, 2002, 13, 457-485.	2.2	14
77	The restricted influence of sparseness of coding on the capacity of familiarity discrimination networks. Network: Computation in Neural Systems, 2002, 13, 457-85.	2.2	2
78	Model of familiarity discrimination in the perirhinal cortex. Journal of Computational Neuroscience, 2001, 10, 5-23.	0.6	81
79	The restricted influence of sparseness of coding on the capacity of familiarity discrimination networks. , 0, .		7