Raquel Barco

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6699118/publications.pdf

Version: 2024-02-01

279701 276775 2,273 121 23 41 citations h-index g-index papers 121 121 121 1488 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Dynamic Packet Duplication for Industrial URLLC. Sensors, 2022, 22, 587.	2.1	7
2	Proactive Dual Connectivity for Automated Guided Vehicles in Outdoor Industrial Environment. IEEE Access, 2022, 10, 54149-54163.	2.6	1
3	Verification and Validation Framework for AFDX Avionics Networks. IEEE Access, 2022, 10, 66743-66756.	2.6	5
4	Radio Frequency Footprint Characterization Based on Mobility Indicators. IEEE Wireless Communications Letters, 2021, 10, 141-145.	3.2	0
5	Measuring Key Quality Indicators in Cloud Gaming: Framework and Assessment Over Wireless Networks. Sensors, 2021, 21, 1387.	2.1	25
6	Location-Awareness for Failure Management in Cellular Networks: An Integrated Approach. Sensors, 2021, 21, 1501.	2.1	9
7	A Multivariate Time-Series Based Approach for Quality Modeling in Wireless Networks. Sensors, 2021, 21, 2017.	2.1	0
8	Optimization of 5G Networks for Smart Logistics. Energies, 2021, 14, 1758.	1.6	37
9	5G Numerologies Assessment for URLLC in Industrial Communications. Sensors, 2021, 21, 2489.	2.1	16
10	Cellular Network Radio Monitoring and Management through Virtual UE Probes: A Study Case Based on Crowded Events. Sensors, 2021, 21, 3404.	2.1	5
11	Framework for Behavioral Analysis of Mobile Networks. Sensors, 2021, 21, 3347.	2.1	O
12	Mass Tracking in Cellular Networks for the COVID-19 Pandemic Monitoring. Sensors, 2021, 21, 3424.	2.1	6
13	Multinode Component Carrier Management: Multiconnectivity in 5G. IEEE Vehicular Technology Magazine, 2021, 16, 40-47.	2.8	2
14	Social-Aware Forecasting for Cellular Networks Metrics. IEEE Communications Letters, 2021, 25, 1931-1934.	2.5	9
15	Anomaly detection and analysis framework for mobile networks., 2021,,.		1
16	5G for Construction: Use Cases and Solutions. Electronics (Switzerland), 2021, 10, 1713.	1.8	14
17	Location-Based Analytics in 5G and Beyond. IEEE Communications Magazine, 2021, 59, 38-43.	4.9	19
18	Opportunistic Fusion of Ranges From Different Sources for Indoor Positioning. IEEE Communications Letters, 2021, 25, 2260-2264.	2.5	12

#	Article	IF	CITATIONS
19	QoE Optimization in a Live Cellular Network through RLC Parameter Tuning. Sensors, 2021, 21, 5619.	2.1	2
20	Method for Artificial KPI Generation With Realistic Time-Dependent Behaviour. IEEE Communications Letters, 2021, 25, 2978-2982.	2.5	0
21	An enhanced symmetric-key based 5G-AKA protocol. Computer Networks, 2021, 198, 108373.	3.2	17
22	Social-Aware Load Balancing System for Crowds in Cellular Networks. IEEE Access, 2021, 9, 107812-107823.	2.6	3
23	WiFi FTM, UWB and Cellular-Based Radio Fusion for Indoor Positioning. Sensors, 2021, 21, 7020.	2.1	19
24	Location-Aware Node Management Solution for Multi-Radio Dual Connectivity Scenarios. Sensors, 2021, 21, 7450.	2.1	1
25	Feature Extraction for Dimensionality Reduction in Cellular Networks Performance Analysis. Sensors, 2020, 20, 6944.	2.1	6
26	Online Anomaly Detection System for Mobile Networks. Sensors, 2020, 20, 7232.	2.1	10
27	Traffic Steering for eMBB in Multi-Connectivity Scenarios. Electronics (Switzerland), 2020, 9, 2063.	1.8	2
28	Transform-Based Multiresolution Decomposition for Degradation Detection in Cellular Networks. Sensors, 2020, 20, 5645.	2.1	2
29	KQI Performance Evaluation of 3GPP LBT Priorities for Indoor Unlicensed Coexistence Scenarios. Electronics (Switzerland), 2020, 9, 1701.	1.8	7
30	Estimation of Video Streaming KQIs for Radio Access Negotiation in Network Slicing Scenarios. IEEE Communications Letters, 2020, 24, 1304-1307.	2.5	15
31	On the Capability of QoE Improvement Based on the Adjustment of RLC Parameters. Sensors, 2020, 20, 2474.	2.1	2
32	Assessing the impact of DRS signaling in unlicensed indoor coexistence scenarios. Eurasip Journal on Wireless Communications and Networking, 2020, 2020, .	1.5	2
33	5G Component Carrier Management Evaluation by Means of System Level Simulations. , 2019, , .		0
34	Edge Sectors Detection in Mobile Communications Networks., 2019,,.		0
35	Street Sections Design Based on Real Traffic Data: Case Study of Málaga, Spain. Journal of the Urban Planning and Development Division, ASCE, 2019, 145, 04019010.	0.8	1
36	Traffic Monitoring via Mobile Device Location. Sensors, 2019, 19, 4505.	2.1	17

#	Article	IF	CITATIONS
37	Modeling of Key Quality Indicators for End-to-End Network Management: Preparing for 5G. IEEE Vehicular Technology Magazine, 2019, 14, 76-84.	2.8	20
38	Swapped Sectors Detection Based on User Location During Inter-Site Handovers. IEEE Access, 2019, 7, 92547-92560.	2.6	0
39	Greenfield Design in 5G FWA Networks. IEEE Communications Letters, 2019, 23, 2422-2426.	2.5	4
40	The Campus as a Smart City: University of M $\tilde{\text{A}}_{\text{i}}$ laga Environmental, Learning, and Research Approaches. Sensors, 2019, 19, 1349.	2.1	74
41	Modeling the UE-perceived cellular network performance following a controller-based approach. Eurasip Journal on Wireless Communications and Networking, 2019, 2019, .	1.5	0
42	Adaptive Cell Outage Compensation in Self-Organizing Networks. IEEE Transactions on Vehicular Technology, 2018, 67, 5231-5244.	3.9	17
43	Automatic Feature Selection Technique for Next Generation Self-Organizing Networks. IEEE Communications Letters, 2018, 22, 1272-1275.	2.5	11
44	Modelling LTE Solved Troubleshooting Cases. Journal of Network and Systems Management, 2018, 26, 23-50.	3.3	5
45	Applying Social Event Data for the Management of Cellular Networks. IEEE Communications Magazine, 2018, 56, 36-43.	4.9	17
46	Swapped Sectors Detection on Multi-Layer Networks. IEEE Communications Letters, 2018, 22, 2342-2345.	2.5	0
47	Dynamic Multipath Connection for Low-Latency Vehicle- to-Everything (V2X) Communications. , 2018, , .		1
48	Self-Healing Framework for Next-Generation Networks through Dimensionality Reduction. IEEE Communications Magazine, 2018, 56, 170-176.	4.9	42
49	Swapped Sectors Detection Based on Mobility Statistics. IEEE Communications Letters, 2018, 22, 1038-1041.	2.5	3
50	Root Cause Analysis Based on Temporal Analysis of Metrics Toward Self-Organizing 5G Networks. IEEE Transactions on Vehicular Technology, 2017, 66, 2811-2824.	3.9	19
51	Improving Cell Outage Management Through Data Analysis. IEEE Wireless Communications, 2017, 24, 113-119.	6.6	7
52	Knowledge Acquisition for Fault Management in LTE Networks. Wireless Personal Communications, 2017, 95, 2895-2914.	1.8	7
53	Unsupervised Technique for Automatic Selection of Performance Indicators in Self-Organizing Networks. IEEE Communications Letters, 2017, 21, 2198-2201.	2.5	8
54	Degradation Detection Algorithm for LTE Root Cause Analysis. Wireless Personal Communications, 2017, 97, 4563-4572.	1.8	5

#	Article	IF	CITATIONS
55	Data Analytics for Diagnosing the RF Condition in Self-Organizing Networks. IEEE Transactions on Mobile Computing, 2017, 16, 1587-1600.	3.9	21
56	A Low-Complexity Vision-Based System for Real-Time Traffic Monitoring. IEEE Transactions on Intelligent Transportation Systems, 2017, 18, 1279-1288.	4.7	42
57	A method for identifying faulty cells using a classification tree-based UE diagnosis in LTE. Eurasip Journal on Wireless Communications and Networking, 2017, 2017, .	1.5	5
58	Improving load balancing techniques by location awareness at indoor femtocell networks. Eurasip Journal on Wireless Communications and Networking, 2016, 2016, .	1.5	4
59	Combination of multiple diagnosis systems in Self-Healing networks. Expert Systems With Applications, 2016, 64, 56-68.	4.4	8
60	Location-based distributed sleeping cell detection and root cause analysis for 5G ultra-dense networks. Eurasip Journal on Wireless Communications and Networking, 2016, 2016, .	1.5	13
61	Unsupervised Performance Functions for Wireless Self-Organising Networks. Wireless Personal Communications, 2016, 90, 2017-2032.	1.8	2
62	A method of assessment of LTE coverage holes. Eurasip Journal on Wireless Communications and Networking, 2016, 2016, .	1.5	15
63	Fault compensation algorithm based on handover margins in LTE networks. Eurasip Journal on Wireless Communications and Networking, 2016, 2016, .	1.5	0
64	Coordinated location-based self-optimization for indoor femtocell networks. Computer Networks, 2016, 106, 1-16.	3.2	4
65	Automatic root cause analysis based on traces for LTE self-organizing networks. IEEE Wireless Communications, 2016, 23, 20-28.	6.6	15
66	Methodology for the Design and Evaluation of Self-Healing LTE Networks. IEEE Transactions on Vehicular Technology, 2016, 65, 6468-6486.	3.9	35
67	Self-healing in mobile networks with big data. IEEE Communications Magazine, 2016, 54, 114-120.	4.9	35
68	Context-Aware Self-Optimization: Evolution Based on the Use Case of Load Balancing in Small-Cell Networks. IEEE Vehicular Technology Magazine, 2016, 11, 86-95.	2.8	17
69	Correlation-Based Time-Series Analysis for Cell Degradation Detection in SON. IEEE Communications Letters, 2016, 20, 396-399.	2.5	19
70	Context-Aware Self-Healing: User Equipment as the Main Source of Information for Small-Cell Indoor Networks. IEEE Vehicular Technology Magazine, 2016, 11, 76-85.	2.8	19
71	Automatic Root Cause Analysis for LTE Networks Based on Unsupervised Techniques. IEEE Transactions on Vehicular Technology, 2016, 65, 2369-2386.	3.9	73
72	Diagnosis Based on Genetic Fuzzy Algorithms for LTE Self-Healing. IEEE Transactions on Vehicular Technology, 2016, 65, 1639-1651.	3.9	26

#	Article	IF	CITATIONS
73	Enhancing localization accuracy with multi-antenna UHF RFID fingerprinting., 2015,,.		7
74	Management architecture for location-aware self-organizing LTE/LTE-a small cell networks., 2015, 53, 294-302.		44
75	Data mining for fuzzy diagnosis systems in LTE networks. Expert Systems With Applications, 2015, 42, 7549-7559.	4.4	30
76	Load balancing mechanisms for indoor temporarily overloaded heterogeneous femtocell networks. Eurasip Journal on Wireless Communications and Networking, 2015, 2015, .	1.5	7
77	Contextualized indicators for online failure diagnosis in cellular networks. Computer Networks, 2015, 82, 96-113.	3.2	19
78	Enhancing RFID indoor localization with cellular technologies. Eurasip Journal on Wireless Communications and Networking, 2015, 2015, .	1.5	24
79	Unsupervised System for Diagnosis in LTE Networks Using Bayesian Networks. , 2015, , .		4
80	Cell Outage Detection Based on Handover Statistics. IEEE Communications Letters, 2015, 19, 1189-1192.	2.5	35
81	Location-aware self-organizing methods in femtocell networks. Computer Networks, 2015, 93, 125-140.	3.2	13
82	Load balancing and handover joint optimization in LTE networks using Fuzzy Logic and Reinforcement Learning. Computer Networks, 2015, 76, 112-125.	3.2	46
83	LTE performance data reduction for knowledge acquisition. , 2014, , .		6
84	Conflict Resolution Between Load Balancing and Handover Optimization in LTE Networks. IEEE Communications Letters, 2014, 18, 1795-1798.	2.5	25
85	Dynamic traffic steering based on fuzzy Q-Learning approach in a multi-RAT multi-layer wireless network. Computer Networks, 2014, 71, 100-116.	3.2	12
86	Smart Cities via Data Aggregation. Wireless Personal Communications, 2014, 76, 149-168.	1.8	20
87	Adjustment of mobility parameters for traffic steering in multi-RAT multi-layer wireless networks. Eurasip Journal on Wireless Communications and Networking, 2013, 2013, .	1.5	3
88	Fuzzy Rule-Based Reinforcement Learning for Load Balancing Techniques in Enterprise LTE Femtocells. IEEE Transactions on Vehicular Technology, 2013, 62, 1962-1973.	3.9	110
89	Optimization of load balancing using fuzzy Q-Learning for next generation wireless networks. Expert Systems With Applications, 2013, 40, 984-994.	4.4	104
90	Mobility-based strategies for traffic steering in heterogeneous networks., 2013, 51, 54-62.		32

#	Article	IF	Citations
91	On the Potential of Handover Parameter Optimization for Self-Organizing Networks. IEEE Transactions on Vehicular Technology, 2013, 62, 1895-1905.	3.9	140
92	Design of a Computationally Efficient Dynamic System-Level Simulator for Enterprise LTE Femtocell Scenarios. Journal of Electrical and Computer Engineering, 2012, 2012, 1-14.	0.6	13
93	A unified framework for self-healing in wireless networks. , 2012, 50, 134-142.		68
94	Optimization of a Fuzzy Logic Controller for Handover-Based Load Balancing. , 2011, , .		26
95	Load Balancing in a Realistic Urban Scenario for LTE Networks. , 2011, , .		22
96	Computationally-Efficient Design of a Dynamic System-Level LTE Simulator. International Journal of Electronics and Telecommunications, 2011, 57, 347-358.	0.5	27
97	Learning of model parameters for fault diagnosis in wireless networks. Wireless Networks, 2010, 16, 255-271.	2.0	25
98	Estimation of link-layer quality parameters in a system-level LTE simulator., 2010,,.		5
99	Inter-system cell reselection parameter auto-tuning in a joint-RRM scenario. , 2010, , .		0
100	Automatic diagnosis of mobile communication networks under imprecise parameters. Expert Systems With Applications, 2009, 36, 489-500.	4.4	25
101	Knowledge acquisition for diagnosis model in wireless networks. Expert Systems With Applications, 2009, 36, 4745-4752.	4.4	79
102	Identification of missing neighbor cells in GERAN. Wireless Networks, 2009, 15, 887-899.	2.0	2
103	Automated Fault Management in Wireless Networks. Advances in E-Business Research Series, 2009, , 742-759.	0.2	0
104	Automated Diagnosis for UMTS Networks Using Bayesian Network Approach. IEEE Transactions on Vehicular Technology, 2008, 57, 2451-2461.	3.9	203
105	Continuous versus Discrete Model in Autodiagnosis Systems for Wireless Networks. IEEE Transactions on Mobile Computing, 2008, 7, 673-681.	3.9	24
106	Automated Troubleshooting of Satellite Communication Ground Equipment. Aerospace Conference Proceedings IEEE, 2008, , .	0.0	0
107	Multipactor Analysis in Microwave Components for High-Power Satellite Applications. International Power Modulator Symposium and High-Voltage Workshop, 2006, , .	0.0	4
108	A Bayesian Approach for Automated Troubleshooting for UMTS Networks. , 2006, , .		12

#	Article	IF	CITATIONS
109	Optimization of the assignment of cells to packet control units in GERAN. IEEE Communications Letters, 2006, 10, 219-221.	2.5	7
110	Multipactor Analysis in Coaxial Waveguides for Satellite Applications using Frequency-Domain Methods., 2006,,.		5
111	Knowledge Acquisition for Diagnosis in Cellular Networks Based on Bayesian Networks. Lecture Notes in Computer Science, 2006, , 55-65.	1.0	4
112	Multiple Intervals Versus Smoothing of Boundaries in the Discretization of Performance Indicators Used for Diagnosis in Cellular Networks. Lecture Notes in Computer Science, 2005, , 958-967.	1.0	1
113	System for automated diagnosis in cellular networks based on performance indicators. European Transactions on Telecommunications, 2005, 16, 399-409.	1.2	104
114	Impact of antenna downtilting on network performance in GERAN systems. IEEE Communications Letters, 2005, 9, 598-600.	2.5	13
115	Analysis of mobile measurement-based interference matrices in GSM networks. , 0, , .		6
116	Automated troubleshooting of a mobile communication network using Bayesian networks., 0,,.		23
117	Simulations and trial results for mobile measurement based frequency planning in GERAN networks. , 0, , .		1
118	The EUREKA GANDALF Project: Monitoring and Self-Tuning Techiques for Heterogeneous Radio Access Networks., 0,,.		5
119	Multipactor Analysis in Coaxial Waveguides. , 0, , .		2
120	Comparison of probabilistic models used for diagnosis in cellular networks. , 0, , .		9
121	The Celtic Gandalf Framework. , 0, , .		10