List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6698916/publications.pdf Version: 2024-02-01

107 papers	4,907 citations	76196 40 h-index	102304 66 g-index
112	112	112	5773
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	An effective strategy for small-sized and highly-dispersed palladium nanoparticles supported on graphene with excellent performance for formic acid oxidation. Journal of Materials Chemistry, 2011, 21, 3384.	6.7	235
2	Phase transfer and its applications in nanotechnology. Chemical Society Reviews, 2011, 40, 1672-1696.	18.7	213
3	Nanocomposites of Ag ₂ S and Noble Metals. Angewandte Chemie - International Edition, 2011, 50, 4637-4643.	7.2	200
4	Bimetallic Cu–Pd alloy multipods and their highly electrocatalytic performance for formic acid oxidation and oxygen reduction. Journal of Materials Chemistry A, 2017, 5, 4421-4429.	5.2	174
5	Hollow and Cage-Bell Structured Nanomaterials of Noble Metals. Journal of the American Chemical Society, 2012, 134, 11602-11610.	6.6	152
6	Morphology and Lateral Strain Control of Pt Nanoparticles <i>via</i> Core–Shell Construction Using Alloy AgPd Core Toward Oxygen Reduction Reaction. ACS Nano, 2012, 6, 9373-9382.	7.3	150
7	Hardâ€Sphere Random Closeâ€Packed Au ₄₇ Cd ₂ (TBBT) ₃₁ Nanoclusters with a Faradaic Efficiency of Up to 96 % for Electrocatalytic CO ₂ Reduction to CO. Angewandte Chemie - International Edition, 2020, 59, 3073-3077.	7.2	139
8	Nanocatalysts for Electrocatalytic Oxidation of Ethanol. ChemSusChem, 2019, 12, 2117-2132.	3.6	134
9	A selective electrocatalyst–based direct methanol fuel cell operated at high concentrations of methanol. Science Advances, 2017, 3, e1700580.	4.7	129
10	Size and composition tunable Ag–Au alloy nanoparticles by replacement reactions. Nanotechnology, 2007, 18, 245605.	1.3	127
11	Core-shell Au@Pd nanoparticles with enhanced catalytic activity for oxygen reduction reaction via core-shell Au@Ag/Pd constructions. Scientific Reports, 2015, 5, 11949.	1.6	112
12	Noble metal-based composite nanomaterials fabricated via solution-based approaches. Journal of Materials Chemistry A, 2015, 3, 3182-3223.	5.2	95
13	Alloy Cu3Pt nanoframes through the structure evolution in Cu-Pt nanoparticles with a core-shell construction. Scientific Reports, 2014, 4, 6414.	1.6	90
14	Diffusion of Gold from the Inner Core to the Surface of Ag2S Nanocrystals. Journal of the American Chemical Society, 2010, 132, 2114-2115.	6.6	80
15	Stellated Ag-Pt bimetallic nanoparticles: An effective platform for catalytic activity tuning. Scientific Reports, 2014, 4, 3969.	1.6	79
16	Interfacial engineering Co and MnO within N,S co-doped carbon hierarchical branched superstructures toward high-efficiency electrocatalytic oxygen reduction for robust Zn-air batteries. Applied Catalysis B: Environmental, 2021, 295, 120281.	10.8	73
17	Manipulation of Mottâ^Schottky Ni/CeO ₂ Heterojunctions into Nâ€Đoped Carbon Nanofibers for Highâ€Efficiency Electrochemical Water Splitting. Small, 2022, 18, e2106592.	5.2	73
18	Highly Reactive Se Precursor for the Phosphine-Free Synthesis of Metal Selenide Nanocrystals. Chemistry of Materials, 2010, 22, 5672-5677.	3.2	68

#	Article	IF	CITATIONS
19	Enhanced non-inflammasome mediated immune responses by mannosylated zwitterionic-based cationic liposomes for HIV DNA vaccines. Biomaterials, 2016, 85, 1-17.	5.7	68
20	Tailoring the Selectivity of Bimetallic Copper–Palladium Nanoalloys for Electrocatalytic Reduction of CO ₂ to CO. ACS Applied Energy Materials, 2018, 1, 883-890.	2.5	68
21	Gold-catalyzed formation of core–shell gold–palladium nanoparticles with palladium shells up to three atomic layers. Journal of Materials Chemistry A, 2016, 4, 3813-3821.	5.2	67
22	Effects of cerium incorporation on the catalytic oxidation of benzene over flame-made perovskite La1â^'xCexMnO3 catalysts. Particuology, 2015, 19, 60-68.	2.0	66
23	Encapsulation of Janus-structured Ni/Ni2P nanoparticles within hierarchical wrinkled N-doped carbon nanofibers: Interface engineering induces high-efficiency water oxidation. Applied Catalysis B: Environmental, 2021, 298, 120578.	10.8	65
24	Unconventional Alloys Confined in Nanoparticles: Building Blocks for New Matter. Matter, 2020, 3, 1646-1663.	5.0	63
25	Atomically Dispersed Mo Sites Anchored on Multichannel Carbon Nanofibers toward Superior Electrocatalytic Hydrogen Evolution. ACS Nano, 2021, 15, 20032-20041.	7.3	62
26	Heterogeneous Au–Pt nanostructures with enhanced catalytic activity toward oxygen reduction. Dalton Transactions, 2012, 41, 2898.	1.6	58
27	Interfacial Engineeringâ€Triggered Bifunctionality of CoS ₂ /MoS ₂ Nanocubes/Nanosheet Arrays for Highâ€Efficiency Overall Water Splitting. ChemSusChem, 2021, 14, 699-708.	3.6	58
28	Platinum-based heterogeneous nanomaterials via wet-chemistry approaches toward electrocatalytic applications. Advances in Colloid and Interface Science, 2016, 230, 29-53.	7.0	56
29	Surface composition dominates the electrocatalytic reduction of CO ₂ on ultrafine CuPd nanoalloys. , 2020, 2, 443-451.		56
30	In situ establishment of Co/MoS ₂ heterostructures onto inverse opalâ€structured N,Sâ€doped carbon hollow nanospheres: Interfacial and architectural dual engineering for efficient hydrogen evolution reaction. SmartMat, 2021, 2, 591-602.	6.4	52
31	Pt–CuS heterodimers by sulfidation of CuPt alloy nanoparticles and their selective catalytic activity toward methanol oxidation. Journal of Materials Chemistry A, 2013, 1, 11880.	5.2	51
32	Highly catalytic hollow palladium nanoparticles derived from silver@silver–palladium core–shell nanostructures for the oxidation of formic acid. Journal of Power Sources, 2014, 272, 152-159.	4.0	51
33	Core-shell gold-nickel nanostructures as highly selective and stable nonenzymatic glucose sensor for fermentation process. Scientific Reports, 2020, 10, 1365.	1.6	50
34	Mechanistic Study on the Bis(p-sulfonatophenyl)phenylphosphine Synthesis of Monometallic Pt Hollow Nanoboxes Using Ag*â^Pt Coreâ^Shell Nanocubes as Sacrificial Templates. Journal of Physical Chemistry C, 2007, 111, 14084-14090.	1.5	49
35	Efficient overall water splitting catalyzed by robust FeNi ₃ N nanoparticles with hollow interiors. Journal of Materials Chemistry A, 2021, 9, 7750-7758.	5.2	48
36	In Situ Anchoring of Zeolite Imidazole Framework-Derived Co, N-Doped Porous Carbon on Multiwalled Carbon Nanotubes toward Efficient Electrocatalytic Oxygen Reduction. ACS Sustainable Chemistry and Engineering, 2020, 8, 478-485.	3.2	47

#	Article	IF	CITATIONS
37	Bimetallic Ag–hollow Pt heterodimers via inside-out migration of Ag in core–shell Ag–Pt nanoparticles at elevated temperature. Journal of Materials Chemistry A, 2014, 2, 7075-7081.	5.2	44
38	A seed-mediated approach to the morphology-controlled synthesis of bimetallic copper–platinum alloy nanoparticles with enhanced electrocatalytic performance for the methanol oxidation reaction. Journal of Power Sources, 2015, 286, 488-494.	4.0	43
39	Recent advances in noble metal-based nanocomposites for electrochemical reactions. Materials Today Energy, 2017, 6, 115-127.	2.5	42
40	Interfacial Pd–O–Ce Linkage Enhancement Boosting Formic Acid Electrooxidation. ACS Applied Materials & Interfaces, 2020, 12, 47065-47075.	4.0	42
41	A core–shell templated approach to the nanocomposites of silver sulfide and noble metal nanoparticles with hollow/cage-bell structures. Nanoscale, 2013, 5, 6901.	2.8	41
42	Electrochemical hydrogen evolution reaction efficiently catalyzed by Ru–N coupling in defect-rich Ru/g-C ₃ N ₄ nanosheets. Journal of Materials Chemistry A, 2021, 9, 15019-15026.	5.2	40
43	Core–Shell CuPd@NiPd Nanoparticles: Coupling Lateral Strain with Electronic Interaction toward High-Efficiency Electrocatalysis. ACS Catalysis, 2022, 12, 9092-9100.	5.5	40
44	Enhancing the Electrocatalytic Property of Hollow Structured Platinum Nanoparticles for Methanol Oxidation Through A Hybrid Construction. Scientific Reports, 2014, 4, 6204.	1.6	39
45	Heterogeneous nanocomposites consisting of Pt ₃ Co alloy particles and CoP ₂ nanorods towards highâ€efficiency methanol electroâ€oxidation. SmartMat, 2021, 2, 234-245.	6.4	38
46	A Universal and Cost-Effective Approach to the Synthesis of Carbon-Supported Noble Metal Nanoparticles with Hollow Interiors. Industrial & Engineering Chemistry Research, 2014, 53, 5925-5931.	1.8	37
47	Core-shell Au-Pd nanoparticles as cathode catalysts for microbial fuel cell applications. Scientific Reports, 2016, 6, 35252.	1.6	37
48	Ternary synergistic catalyst system of Pt–Cu–Mo2C with high activity and durability for alcohol oxidation. Materials Today Physics, 2021, 17, 100357.	2.9	37
49	Combining the core-shell construction with an alloying effect for high efficiency ethanol electrooxidation. Cell Reports Physical Science, 2021, 2, 100357.	2.8	32
50	Reduced graphene oxide modified platinum catalysts for the oxidation of volatile organic compounds. Catalysis Today, 2016, 278, 203-208.	2.2	31
51	Enhancing the methanol tolerance of platinum nanoparticles for the cathode reaction of direct methanol fuel cells through a geometric design. Scientific Reports, 2015, 5, 16219.	1.6	30
52	Emerging nanostructured materials for the catalytic removal of volatile organic compounds. Nanotechnology Reviews, 2016, 5, .	2.6	30
53	Uniformly dispersed platinum-cobalt alloy nanoparticles with stable compositions on carbon substrates for methanol oxidation reaction. Scientific Reports, 2017, 7, 11421.	1.6	30
54	A universal approach to the synthesis of nanodendrites of noble metals. Nanoscale, 2014, 6, 6173-6179.	2.8	29

#	Article	IF	CITATIONS
55	Selective electrocatalysts toward a prototype of the membraneless direct methanol fuel cell. Scientific Reports, 2014, 4, 3813.	1.6	29
56	PEDOT functionalized ZIF-67 derived Co-N-S triple-doped porous carbon for high-efficiency oxygen reduction. Applied Surface Science, 2021, 535, 147659.	3.1	29
57	Effect of Reduction Treatment on Structural Properties of TiO2 Supported Pt Nanoparticles and Their Catalytic Activity for Benzene Oxidation. Catalysis Letters, 2014, 144, 1080-1087.	1.4	28
58	Fine platinum nanoparticles supported on polyindole-derived nitrogen-doped carbon nanotubes for efficiently catalyzing methanol electrooxidation. Applied Surface Science, 2020, 501, 144260.	3.1	28
59	Rough-surfaced bimetallic copper–palladium alloy multicubes as highly bifunctional electrocatalysts for formic acid oxidation and oxygen reduction. Green Energy and Environment, 2019, 4, 254-263.	4.7	27
60	Bidirectional controlling synthesis of branched PdCu nanoalloys for efficient and robust formic acid oxidation electrocatalysis. Journal of Colloid and Interface Science, 2021, 600, 503-512.	5.0	27
61	Encapsulation of Co/Co3O4 hetero-nanoparticles within the inner tips of N-doped carbon nanotubes: Engineering Mott-Schottky nanoreactors for efficient bifunctional oxygen electrocalysis toward flexible zinc-air batteries. Chemical Engineering Journal, 2022, 448, 137709.	6.6	27
62	Pt-Containing Ag2S-Noble Metal Nanocomposites as Highly Active Electrocatalysts for the Oxidation of Formic Acid. Nano-Micro Letters, 2014, 6, 252-257.	14.4	24
63	One-pot synthesis of noble metal nanoparticles with a core–shell construction. CrystEngComm, 2015, 17, 1826-1832.	1.3	24
64	Encapsulation of NiCo nanoparticles into foam-like porous N,P-codoped carbon nanosheets: Electronic and architectural dual regulations toward high-efficiency water electrolysis. Chemical Engineering Journal, 2021, 410, 128325.	6.6	24
65	Interfacial engineering-induced electronic regulation drastically enhances the electrocatalytic oxygen evolution: Immobilization of Janus-structured NiS/NiO nanoparticles onto carbon nanotubes/nanofiber-integrated superstructures. Chemical Engineering Journal, 2022, 428, 131094.	6.6	23
66	Replacement reaction-based synthesis of supported palladium catalysts with atomic dispersion for catalytic removal of benzene. Journal of Materials Chemistry A, 2018, 6, 17032-17039.	5.2	22
67	Heterogeneous nanocomposites of silver selenide and hollow platinum nanoparticles toward methanol oxidation reaction. Journal of Power Sources, 2016, 327, 432-437.	4.0	21
68	A Molecular-Based Design of RGO/TiO ₂ -PAM Composite Flocculant with Photocatalytic Self-Degrading Characteristics and the Application of the Oil Sand Tailings Flocculant. ACS Sustainable Chemistry and Engineering, 2019, 7, 6758-6768.	3.2	21
69	Template-free synthesis of platinum hollow-opened structures in deep-eutectic solvents and their enhanced performance for methanol electrooxidation. Electrochimica Acta, 2020, 337, 135742.	2.6	21
70	Confinement of sulfur-doped NiO nanoparticles into N-doped carbon nanotube/nanofiber-coupled hierarchical branched superstructures: Electronic modulation by anion doping boosts oxygen evolution electrocatalysis. Journal of Energy Chemistry, 2021, 63, 585-593.	7.1	20
71	<i>In situ</i> immobilization of Fe/Fe ₃ C/Fe ₂ O ₃ hollow hetero-nanoparticles onto nitrogen-doped carbon nanotubes towards high-efficiency electrocatalytic oxygen reduction. Nanoscale, 2021, 13, 5400-5409.	2.8	19
72	Cage-bell structured Au–Pt nanomaterials with enhanced electrocatalytic activity toward oxygen reduction. International Journal of Hydrogen Energy, 2012, 37, 13191-13199.	3.8	18

#	Article	IF	CITATIONS
73	MOF-assisted synthesis of Ni, Co, Zn, and N multidoped porous carbon as highly efficient oxygen reduction electrocatalysts in Zn–air batteries. Materials Today Energy, 2021, 19, 100579.	2.5	18
74	Core-shell Ag–Pt nanoparticles: A versatile platform for the synthesis of heterogeneous nanostructures towards catalyzing electrochemical reactions. Chinese Chemical Letters, 2021, 32, 3288-3297.	4.8	18
75	Fine platinum nanoparticles supported on a porous ceramic membrane as efficient catalysts for the removal of benzene. Scientific Reports, 2017, 7, 16589.	1.6	16
76	Research on self-degradation of RGO/TiO2-P(AM-DAC) organic-inorganic composite flocculant prepared by surface initiated polymerization and its flocculation mechanism of oil sand tailings. European Polymer Journal, 2019, 120, 109165.	2.6	16
77	Sulfonated cobalt phthalocyanine-derived Co-N-S tridoped carbon nanotubes as platinum catalyst supports for highly efficient methanol electrooxidation. Applied Surface Science, 2020, 511, 145519.	3.1	16
78	Fine silver sulfide–platinum nanocomposites supported on carbon substrates for the methanol oxidation reaction. RSC Advances, 2017, 7, 3455-3460.	1.7	15
79	Preparation of RGO/TiO2/Ag Aerogel and Its Photodegradation Performance in Gas Phase Formaldehyde. Scientific Reports, 2019, 9, 16314.	1.6	15
80	A dual ligand coordination strategy for synthesizing drum-like Co, N co-doped porous carbon electrocatalyst towards superior oxygen reduction and zinc-air batteries. International Journal of Hydrogen Energy, 2021, 46, 24472-24483.	3.8	15
81	Enhanced electrocatalytic activity of Pt-nanostructures prepared by electrodeposition using poly(vinyl pyrrolidone) as a shape-control agent. Electrochimica Acta, 2012, 83, 383-386.	2.6	13
82	Fabrication of Hollow and Yolk–Shell Structured Î⊷Fe2O3 Nanoparticles with Versatile Configurations. Industrial & Engineering Chemistry Research, 2013, 52, 1303-1308.	1.8	13
83	Nanoscale noble metals with a hollow interior formed through inside-out diffusion of silver in solid-state core-shell nanoparticles. Nano Research, 2015, 8, 512-522.	5.8	13
84	Nanodendritic Platinum Supported on Î ³ -Alumina for Complete Benzene Oxidation. Particle and Particle Systems Characterization, 2016, 33, 620-627.	1.2	13
85	Worm-like Pt nanoparticles anchored on graphene with S, N co-doping and Fe3O4 functionalization for boosting the electrooxidation of methanol. International Journal of Hydrogen Energy, 2020, 45, 22929-22937.	3.8	12
86	Core-shell Au@PtIr nanowires with dendritic alloy shells as efficient bifunctional catalysts toward methanol oxidation and hydrogen evolution reactions. International Journal of Hydrogen Energy, 2021, 46, 36771-36780.	3.8	12
87	Formation of composite dimers consisting of Ag ₂ S and hollow structured Pd nanoparticles. CrystEngComm, 2015, 17, 6155-6162.	1.3	11
88	Cage-bell Pt-Pd nanostructures with enhanced catalytic properties and superior methanol tolerance for oxygen reduction reaction. Scientific Reports, 2016, 6, 24600.	1.6	11
89	Electronic and lattice strain dual tailoring for boosting Pd electrocatalysis in oxygen reduction reaction. IScience, 2021, 24, 103332.	1.9	10
90	Fe incorporation-induced electronic modification of Co-tannic acid complex nanoflowers for high-performance water oxidation. Inorganic Chemistry Frontiers, 2022, 9, 1091-1099.	3.0	10

#	Article	IF	CITATIONS
91	Intracellular accumulation and immunological responses of lipid modified magnetic iron nanoparticles in mouse antigen processing cells. Biomaterials Science, 2017, 5, 1603-1611.	2.6	9
92	A perspective of chalcogenide semiconductor-noble metal nanocomposites through structural transformations. Nano Materials Science, 2019, 1, 184-197.	3.9	9
93	Efficient carbon dioxide electroreduction over rationally designed heterogeneous Ag2S-Au nanocomposites. Journal of Colloid and Interface Science, 2022, 623, 1172-1180.	5.0	9
94	Ag facilitated shape control of transition-metal nanoparticles. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2011, 385, 85-90.	2.3	8
95	Electron density regulation of Pt–Co nanoalloys <i>via</i> P incorporation towards methanol electrooxidation. Materials Advances, 2022, 3, 4268-4277.	2.6	8
96	Li-Deficient Materials-Decoration Restrains Oxygen Evolution Achieving Excellent Cycling Stability of Li-Rich Mn-Based Cathode. ACS Applied Materials & Interfaces, 2022, 14, 30133-30143.	4.0	8
97	Ultrafine Pt Nanoclusters for the Direct Methanol Fuel Cell Reactions. Journal of Cluster Science, 2011, 22, 173-181.	1.7	7
98	Ptâ€ŀrO ₂ nanorod array electrode for oxygen evolution in PEM water electrolysis cell. Asia-Pacific Journal of Chemical Engineering, 2013, 8, 271-277.	0.8	6
99	Optimizing Lattice Strain and Electron Effect of Ultrathin Platinum Nanoshells through Core–Shell Construction toward Superior Electrocatalytic Hydrogen Evolution. Industrial & Engineering Chemistry Research, 2022, 61, 7529-7536.	1.8	6
100	Immobilizing Ultrafine PtNi Nanoparticles within Graphitic Carbon Nanosheets toward High-Performance Hydrogenation Reaction. ACS Omega, 2018, 3, 16436-16442.	1.6	5
101	Ionic liquid surfactant-derived carbon micro/nanostructures toward application of supercapacitors. Inorganic Chemistry Frontiers, 2022, 9, 1609-1621.	3.0	5
102	High recycling Fe3O4-CdTe nanocomposites for the detection of organophosphorothioate pesticide chlorpyrifos. Green Energy and Environment, 2022, 7, 229-235.	4.7	4
103	One‣tep Template/Solventâ€Free Pyrolysis for In Situ Immobilization of CoP Nanoparticles onto N and P Coâ€Doped Carbon Porous Nanosheets towards Highâ€efficiency Electrocatalytic Hydrogen Evolution. Chemistry - A European Journal, 2021, 27, 9850-9857.	1.7	3
104	Suppressing oxygen vacancies on the surface of Li-rich material as a high-energy cathode via high oxygen affinity Ca0.95Bi0.05MnO3 coating. Electrochimica Acta, 2022, 421, 140465.	2.6	3
105	Understanding the formation of nanocomposites consisting of silver sulfide and platinum hollow nanostructures. Journal of Solid State Chemistry, 2018, 265, 387-392.	1.4	2
106	Pt-Containing Ag2S-Noble Metal Nanocomposites as Highly Active Electrocatalysts for the Oxidation of Formic Acid. Nano-Micro Letters, 2014, 6, 252.	14.4	1
107	Inside Back Cover: Volume 2 Issue 2. SmartMat, 2021, 2, iv.	6.4	0