
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6698699/publications.pdf Version: 2024-02-01

IAMES M TIEDIE

#	Article	IF	CITATIONS
1	Application of magnetic biochar/quaternary phosphonium salt to combat the antibiotic resistome in livestock wastewater. Science of the Total Environment, 2022, 811, 151386.	3.9	5
2	Permafrost thaw with warming reduces microbial metabolic capacities in subsurface soils. Molecular Ecology, 2022, 31, 1403-1415.	2.0	12
3	Microbes and Climate Change: a Research Prospectus for the Future. MBio, 2022, 13, e0080022.	1.8	53
4	Reduction of microbial diversity in grassland soil is driven by long-term climate warming. Nature Microbiology, 2022, 7, 1054-1062.	5.9	86
5	Antibiotic Resistomes and Microbiomes in the Surface Water along the Code River in Indonesia Reflect Drainage Basin Anthropogenic Activities. Environmental Science & Technology, 2022, 56, 14994-15006.	4.6	11
6	A genomic catalog of Earth's microbiomes. Nature Biotechnology, 2021, 39, 499-509.	9.4	457
7	Winter warming rapidly increases carbon degradation capacities of fungal communities in tundra soil: Potential consequences on carbon stability. Molecular Ecology, 2021, 30, 926-937.	2.0	16
8	Does anaerobic condition play a more positive role in dissipation of antibiotic resistance genes in soil?. Science of the Total Environment, 2021, 757, 143737.	3.9	16
9	Climate warming enhances microbial network complexity and stability. Nature Climate Change, 2021, 11, 343-348.	8.1	672
10	A new primer set for Clade I nosZ that recovers genes from a broader range of taxa. Biology and Fertility of Soils, 2021, 57, 523-531.	2.3	25
11	Peat-based gnotobiotic plant growth systems for Arabidopsis microbiome research. Nature Protocols, 2021, 16, 2450-2470.	5.5	26
12	Metagenomic analysis reveals the shared and distinct features of the soil resistome across tundra, temperate prairie, and tropical ecosystems. Microbiome, 2021, 9, 108.	4.9	60
13	Removal of extracellular antibiotic resistance genes using magnetic biochar/quaternary phosphonium salt in aquatic environments: A mechanistic study. Journal of Hazardous Materials, 2021, 411, 125048.	6.5	36
14	Long-read sequencing revealed cooccurrence, host range, and potential mobility of antibiotic resistome in cow feces. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	27
15	An omics-based framework for assessing the health risk of antimicrobial resistance genes. Nature Communications, 2021, 12, 4765.	5.8	248
16	Long-term excess nitrogen fertilizer increases sensitivity of soil microbial community to seasonal change revealed by ecological network and metagenome analyses. Soil Biology and Biochemistry, 2021, 160, 108349.	4.2	77
17	MicroRNA-based host response to toxicant exposure is influenced by the presence of gut microbial populations. Science of the Total Environment, 2021, 797, 149130.	3.9	2
18	Bioaccumulation of Manure-borne antibiotic resistance genes in carrot and its exposure assessment. Environment International, 2021, 157, 106830.	4.8	36

#	Article	IF	CITATIONS
19	Strategy for Mitigating Antibiotic Resistance by Biochar and Hyperaccumulators in Cadmium and Oxytetracycline Co-contaminated Soil. Environmental Science & Technology, 2021, 55, 16369-16378.	4.6	46
20	Artificial intelligence: A powerful paradigm for scientific research. Innovation(China), 2021, 2, 100179.	5.2	200
21	Technologies and perspectives for achieving carbon neutrality. Innovation(China), 2021, 2, 100180.	5.2	306
22	Bioavailability of clay-adsorbed dioxin to Sphingomonas wittichii RW1 and its associated genome-wide shifts in gene expression. Science of the Total Environment, 2020, 712, 135525.	3.9	6
23	Organic amendments change soil organic C structure and microbial community but not total organic matter on sub-decadal scales. Soil Biology and Biochemistry, 2020, 150, 107986.	4.2	7
24	Gene-informed decomposition model predicts lower soil carbon loss due to persistent microbial adaptation to warming. Nature Communications, 2020, 11, 4897.	5.8	67
25	Editorial: The Environmental Dimension of Antibiotic Resistance. FEMS Microbiology Ecology, 2020, 96,	1.3	23
26	The soil microbial carbon pump: From conceptual insights to empirical assessments. Global Change Biology, 2020, 26, 6032-6039.	4.2	122
27	Antibiotic Resistance in Soil. Handbook of Environmental Chemistry, 2020, , 267-293.	0.2	5
28	Winter warming in Alaska accelerates lignin decomposition contributed by Proteobacteria. Microbiome, 2020, 8, 84.	4.9	47
29	Roadmap for naming uncultivated Archaea and Bacteria. Nature Microbiology, 2020, 5, 987-994.	5.9	115
30	Targeted assemblies of <i>cas1</i> suggest CRISPR-Cas's response to soil warming. ISME Journal, 2020, 14, 1651-1662.	4.4	6
31	Warming-induced permafrost thaw exacerbates tundra soil carbon decomposition mediated by microbial community. Microbiome, 2020, 8, 3.	4.9	75
32	A general framework for quantitatively assessing ecological stochasticity. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 16892-16898.	3.3	482
33	Composting increased persistence of manure-borne antibiotic resistance genes in soils with different fertilization history. Science of the Total Environment, 2019, 689, 1172-1180.	3.9	40
34	Tundra microbial community taxa and traits predict decomposition parameters of stable, old soil organic carbon. ISME Journal, 2019, 13, 2901-2915.	4.4	24
35	Responses of tundra soil microbial communities to half a decade of experimental warming at two critical depths. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 15096-15105.	3.3	83
36	Pharmaceutical exposure changed antibiotic resistance genes and bacterial communities in soil-surface- and overhead-irrigated greenhouse lettuce. Environment International, 2019, 131, 105031.	4.8	48

#	Article	IF	CITATIONS
37	Diazotroph Diversity and Nitrogen Fixation in Summer Active Perennial Grasses in a Mediterranean Region Agricultural Soil. Frontiers in Molecular Biosciences, 2019, 6, 115.	1.6	34
38	Antibiotic Resistance Genes in the Human-Impacted Environment: A One Health Perspective. Pedosphere, 2019, 29, 273-282.	2.1	100
39	Clobal diversity and biogeography of bacterial communities in wastewater treatment plants. Nature Microbiology, 2019, 4, 1183-1195.	5.9	491
40	Bacillus-Dominant Airborne Bacterial Communities Identified During Asian Dust Events. Microbial Ecology, 2019, 78, 677-687.	1.4	13
41	Long-Term Warming in Alaska Enlarges the Diazotrophic Community in Deep Soils. MBio, 2019, 10, .	1.8	22
42	Climate warming accelerates temporal scaling of grassland soil microbial biodiversity. Nature Ecology and Evolution, 2019, 3, 612-619.	3.4	82
43	Antibiotic resistance in European wastewater treatment plants mirrors the pattern of clinical antibiotic resistance prevalence. Science Advances, 2019, 5, eaau9124.	4.7	346
44	Community shift of microbial ammonia oxidizers in air-dried rice soils after 22Âyears of nitrogen fertilization. Biology and Fertility of Soils, 2019, 55, 419-424.	2.3	16
45	Editorial: Environmental aspects of antibiotic resistance. FEMS Microbiology Ecology, 2019, 95, .	1.3	2
46	Genomic Variations Underlying Speciation and Niche Specialization of <i>Shewanella baltica</i> . MSystems, 2019, 4, .	1.7	10
47	Review, Evaluation, and Directions for Gene-Targeted Assembly for Ecological Analyses of Metagenomes. Frontiers in Genetics, 2019, 10, 957.	1.1	8
48	Deforestation impacts network co-occurrence patterns of microbial communities in Amazon soils. FEMS Microbiology Ecology, 2019, 95, .	1.3	34
49	Isotopic evidence for episodic nitrogen fixation in switchgrass (Panicum virgatum L.). Soil Biology and Biochemistry, 2019, 129, 90-98.	4.2	59
50	Effect of LSU and ITS genetic markers and reference databases on analyses of fungal communities. Biology and Fertility of Soils, 2019, 55, 79-88.	2.3	33
51	Glucose addition increases the magnitude and decreases the age of soil respired carbon in a long-term permafrost incubation study. Soil Biology and Biochemistry, 2019, 129, 201-211.	4.2	26
52	Bacillus cabrialesii sp. nov., an endophytic plant growth promoting bacterium isolated from wheat (Triticum turgidum subsp. durum) in the Yaqui Valley, Mexico. International Journal of Systematic and Evolutionary Microbiology, 2019, 69, 3939-3945.	0.8	40
53	Comment on "The whole-soil carbon flux in response to warming― Science, 2018, 359, .	6.0	12
54	Bacterial Community Shift and Coexisting/Coexcluding Patterns Revealed by Network Analysis in a Uranium-Contaminated Site after Bioreduction Followed by Reoxidation. Applied and Environmental Microbiology, 2018, 84, .	1.4	37

#	Article	IF	CITATIONS
55	ARGs-OAP v2.0 with an expanded SARG database and Hidden Markov Models for enhancement characterization and quantification of antibiotic resistance genes in environmental metagenomes. Bioinformatics, 2018, 34, 2263-2270.	1.8	375
56	How Much Do rRNA Gene Surveys Underestimate Extant Bacterial Diversity?. Applied and Environmental Microbiology, 2018, 84, .	1.4	47
57	Biomass and biofuel crop effects on biodiversity and ecosystem services in the North Central US. Biomass and Bioenergy, 2018, 114, 18-29.	2.9	61
58	The Microbiome of Eucalyptus Roots under Different Management Conditions and Its Potential for Biological Nitrogen Fixation. Microbial Ecology, 2018, 75, 183-191.	1.4	45
59	Microbial functional diversity covaries with permafrost thawâ€induced environmental heterogeneity in tundra soil. Global Change Biology, 2018, 24, 297-307.	4.2	22
60	Divergence in Gene Regulation Contributes to Sympatric Speciation of Shewanella baltica Strains. Applied and Environmental Microbiology, 2018, 84, .	1.4	5
61	Antibiotic Resistance Gene Detection in the Microbiome Context. Microbial Drug Resistance, 2018, 24, 542-546.	0.9	14
62	Metagenomic Insights into the Degradation of Resistant Starch by Human Gut Microbiota. Applied and Environmental Microbiology, 2018, 84, .	1.4	63
63	Nonpareil 3: Fast Estimation of Metagenomic Coverage and Sequence Diversity. MSystems, 2018, 3, .	1.7	152
64	Long-Term Effect of Different Fertilization and Cropping Systems on the Soil Antibiotic Resistome. Environmental Science & Technology, 2018, 52, 13037-13046.	4.6	88
65	Associative nitrogen fixation (ANF) in switchgrass (Panicum virgatum) across a nitrogen input gradient. PLoS ONE, 2018, 13, e0197320.	1.1	71
66	Root-Associated Microbiome of Maize Genotypes with Contrasting Phosphorus Use Efficiency. Phytobiomes Journal, 2018, 2, 129-137.	1.4	59
67	Microbial Community Structure and Functional Potential in Cultivated and Native Tallgrass Prairie Soils of the Midwestern United States. Frontiers in Microbiology, 2018, 9, 1775.	1.5	36
68	Biotic responses buffer warmingâ€induced soil organic carbon loss in Arctic tundra. Global Change Biology, 2018, 24, 4946-4959.	4.2	21
69	Antibiotic Resistome Associated with Small-Scale Poultry Production in Rural Ecuador. Environmental Science & Technology, 2018, 52, 8165-8172.	4.6	40
70	Primer set 2.0 for highly parallel qPCR array targeting antibiotic resistance genes and mobile genetic elements. FEMS Microbiology Ecology, 2018, 94, .	1.3	95
71	Conserved phylogenetic distribution and limited antibiotic resistance of class 1 integrons revealed by assessing the bacterial genome and plasmid collection. Microbiome, 2018, 6, 130.	4.9	83
72	Taxonomic and Functional Responses of Soil Microbial Communities to Annual Removal of Aboveground Plant Biomass. Frontiers in Microbiology, 2018, 9, 954.	1.5	11

#	Article	IF	CITATIONS
73	Climate warming leads to divergent succession of grassland microbial communities. Nature Climate Change, 2018, 8, 813-818.	8.1	208
74	New Biological Insights Into How Deforestation in Amazonia Affects Soil Microbial Communities Using Metagenomics and Metagenome-Assembled Genomes. Frontiers in Microbiology, 2018, 9, 1635.	1.5	51
75	More replenishment than priming loss of soil organic carbon with additional carbon input. Nature Communications, 2018, 9, 3175.	5.8	69
76	The Microbial Genomes Atlas (MiGA) webserver: taxonomic and gene diversity analysis of Archaea and Bacteria at the whole genome level. Nucleic Acids Research, 2018, 46, W282-W288.	6.5	458
77	Virulence factor activity relationships (VFARs): a bioinformatics perspective. Environmental Sciences: Processes and Impacts, 2017, 19, 247-260.	1.7	16
78	Warming enhances old organic carbon decomposition through altering functional microbial communities. ISME Journal, 2017, 11, 1825-1835.	4.4	136
79	Influence of Manure Application on the Environmental Resistome under Finnish Agricultural Practice with Restricted Antibiotic Use. Environmental Science & Technology, 2017, 51, 5989-5999.	4.6	142
80	lsothermal assay targeting class 1 integrase gene for environmental surveillance of antibiotic resistance markers. Journal of Environmental Management, 2017, 198, 213-220.	3.8	17
81	TCDD influences reservoir of antibiotic resistance genes in murine gut microbiome. FEMS Microbiology Ecology, 2017, 93, .	1.3	32
82	Soil depth and crop determinants of bacterial communities under ten biofuel cropping systems. Soil Biology and Biochemistry, 2017, 112, 140-152.	4.2	61
83	Strategies to improve reference databases for soil microbiomes. ISME Journal, 2017, 11, 829-834.	4.4	106
84	Soil Organic Carbon in a Changing World. Pedosphere, 2017, 27, 789-791.	2.1	33
85	TCDD administered on activated carbon eliminates bioavailability and subsequent shifts to a key murine gut commensal. Applied Microbiology and Biotechnology, 2017, 101, 7409-7415.	1.7	9
86	Cellulosic biofuel contributions to a sustainable energy future: Choices and outcomes. Science, 2017, 356, .	6.0	314
87	Quantification of microRNAs directly from body fluids using a base-stacking isothermal amplification method in a point-of-care device. Biomedical Microdevices, 2017, 19, 45.	1.4	7
88	Most probable number - loop mediated isothermal amplification (MPN-LAMP) for quantifying waterborne pathogens in < 25 min. Journal of Microbiological Methods, 2017, 132, 27-33.	0.7	27
89	Hypoxia and Inactivity Related Physiological Changes (Constipation, Inflammation) Are Not Reflected at the Level of Gut Metabolites and Butyrate Producing Microbial Community: The PlanHab Study. Frontiers in Physiology, 2017, 8, 250.	1.3	32

90 Modeling Hybridization Kinetics of Gene Probes in a DNA Biochip Using FEMLAB. Microarrays (Basel,) Tj ETQq0 0 0 rgBT /Overlock 10 Tf

#	Article	IF	CITATIONS
91	Modulatory Influence of Segmented Filamentous Bacteria on Transcriptomic Response of Gnotobiotic Mice Exposed to TCDD. Frontiers in Microbiology, 2017, 8, 1708.	1.5	12
92	MicroRNAs-Based Inter-Domain Communication between the Host and Members of the Gut Microbiome. Frontiers in Microbiology, 2017, 8, 1896.	1.5	46
93	Evaluation of Nucleic Acid Isothermal Amplification Methods for Human Clinical Microbial Infection Detection. Frontiers in Microbiology, 2017, 8, 2211.	1.5	17
94	Hypoxia and inactivity related physiological changes precede or take place in absence of significant rearrangements in bacterial community structure: The PlanHab randomized trial pilot study. PLoS ONE, 2017, 12, e0188556.	1.1	20
95	Metagenomics Reveals Pervasive Bacterial Populations and Reduced Community Diversity across the Alaska Tundra Ecosystem. Frontiers in Microbiology, 2016, 7, 579.	1.5	66
96	Size Matters: Assessing Optimum Soil Sample Size for Fungal and Bacterial Community Structure Analyses Using High Throughput Sequencing of rRNA Gene Amplicons. Frontiers in Microbiology, 2016, 7, 824.	1.5	58
97	NifH-Harboring Bacterial Community Composition across an Alaskan Permafrost Thaw Gradient. Frontiers in Microbiology, 2016, 7, 1894.	1.5	35
98	Sphingomonas wittichii Strain RW1 Genome-Wide Gene Expression Shifts in Response to Dioxins and Clay. PLoS ONE, 2016, 11, e0157008.	1.1	24
99	Editorial: Special section of FEMS Microbiology Ecology on the environmental dimension of antibiotic resistance. FEMS Microbiology Ecology, 2016, 92, fiw172.	1.3	9
100	Clusters of Antibiotic Resistance Genes Enriched Together Stay Together in Swine Agriculture. MBio, 2016, 7, e02214-15.	1.8	201
101	Influence of corn, switchgrass, and prairie cropping systems on soil microbial communities in the upper Midwest of the United States. GCB Bioenergy, 2016, 8, 481-494.	2.5	79
102	Annual Removal of Aboveground Plant Biomass Alters Soil Microbial Responses to Warming. MBio, 2016, 7, .	1.8	43
103	Land use intensification in the humid tropics increased both alpha and beta diversity of soil bacteria. Ecology, 2016, 97, 2760-2771.	1.5	92
104	Shewanella baltica Ecotypes Have Wide Transcriptional Variation under the Same Growth Conditions. MSphere, 2016, 1, .	1.3	3
105	Methodologies for probing the metatranscriptome of grassland soil. Journal of Microbiological Methods, 2016, 131, 122-129.	0.7	19
106	Influence of Soil Characteristics and Proximity to Antarctic Research Stations on Abundance of Antibiotic Resistance Genes in Soils. Environmental Science & Technology, 2016, 50, 12621-12629.	4.6	107
107	Aquaculture changes the profile of antibiotic resistance and mobile genetic element associated genes in Baltic Sea sediments. FEMS Microbiology Ecology, 2016, 92, fiw052.	1.3	142
108	Soil fungal and bacterial responses to conversion of open land to shortâ€rotation woody biomass crops. GCB Bioenergy, 2016, 8, 723-736.	2.5	20

JAMES M TIEDJE

#	Article	lF	CITATIONS
109	Tundra soil carbon is vulnerable to rapid microbial decomposition under climate warming. Nature Climate Change, 2016, 6, 595-600.	8.1	260
110	Antimicrobial resistance dashboard application for mapping environmental occurrence and resistant pathogens. FEMS Microbiology Ecology, 2016, 92, fiw020.	1.3	32
111	High-throughput quantification of antibiotic resistance genes from an urban wastewater treatment plant. FEMS Microbiology Ecology, 2016, 92, fiw014.	1.3	167
112	ARGs-OAP: online analysis pipeline for antibiotic resistance genes detection from metagenomic data using an integrated structured ARG-database. Bioinformatics, 2016, 32, 2346-2351.	1.8	254
113	Metagenomic Assembly Reveals Hosts of Antibiotic Resistance Genes and the Shared Resistome in Pig, Chicken, and Human Feces. Environmental Science & Technology, 2016, 50, 420-427.	4.6	287
114	Switchgrass rhizospheres stimulate microbial biomass but deplete microbial necromass in agricultural soils of the upper Midwest, USA. Soil Biology and Biochemistry, 2016, 94, 173-180.	4.2	32
115	Microbial Community Analysis with Ribosomal Gene Fragments from Shotgun Metagenomes. Applied and Environmental Microbiology, 2016, 82, 157-166.	1.4	73
116	The Resistome of Farmed Fish Feces Contributes to the Enrichment of Antibiotic Resistance Genes in Sediments below Baltic Sea Fish Farms. Frontiers in Microbiology, 2016, 7, 2137.	1.5	119
117	Functional roles of CymA and NapC in reduction of nitrate and nitrite by Shewanella putrefaciens W3-18-1. Microbiology (United Kingdom), 2016, 162, 930-941.	0.7	14
118	Xander: employing a novel method for efficient gene-targeted metagenomic assembly. Microbiome, 2015, 3, 32.	4.9	83
119	Intestinal microbial communities associated with acute enteric infections and disease recovery. Microbiome, 2015, 3, 45.	4.9	151
120	Denitrifying and diazotrophic community responses to artificial warming in permafrost and tallgrass prairie soils. Frontiers in Microbiology, 2015, 6, 746.	1.5	19
121	Comparative metagenomics reveals impact of contaminants on groundwater microbiomes. Frontiers in Microbiology, 2015, 6, 1205.	1.5	77
122	Differential Response of Acidobacteria Subgroups to Forest-to-Pasture Conversion and Their Biogeographic Patterns in the Western Brazilian Amazon. Frontiers in Microbiology, 2015, 6, 1443.	1.5	111
123	Intercropped Silviculture Systems, a Key to Achieving Soil Fungal Community Management in Eucalyptus Plantations. PLoS ONE, 2015, 10, e0118515.	1.1	38
124	Alterations of the Murine Gut Microbiome with Age and Allergic Airway Disease. Journal of Immunology Research, 2015, 2015, 1-8.	0.9	47
125	Gene expression analysis of <i>E. coli</i> strains provides insights into the role of gene regulation in diversification. ISME Journal, 2015, 9, 1130-1140.	4.4	63
126	Methaneâ€derived carbon flow through microbial communities in arctic lake sediments. Environmental Microbiology, 2015, 17, 3233-3250.	1.8	31

#	Article	IF	CITATIONS
127	Metagenomic and network analysis reveal wide distribution and co-occurrence of environmental antibiotic resistance genes. ISME Journal, 2015, 9, 2490-2502.	4.4	928
128	Evaluation of the Ion Torrent Personal Genome Machine for Gene-Targeted Studies Using Amplicons of the Nitrogenase Gene <i>nifH</i> . Applied and Environmental Microbiology, 2015, 81, 4536-4545.	1.4	26
129	Dynamic Succession of Groundwater Functional Microbial Communities in Response to Emulsified Vegetable Oil Amendment during Sustained <i>In Situ</i> U(VI) Reduction. Applied and Environmental Microbiology, 2015, 81, 4164-4172.	1.4	24
130	Selection of fluorescent DNA dyes for real-time LAMP with portable and simple optics. Journal of Microbiological Methods, 2015, 119, 223-227.	0.7	37
131	Using the class 1 integron-integrase gene as a proxy for anthropogenic pollution. ISME Journal, 2015, 9, 1269-1279.	4.4	974
132	Diet is a major factor governing the fecal butyrate-producing community structure across <i>Mammalia</i> , <i>Aves</i> and <i>Reptilia</i> . ISME Journal, 2015, 9, 832-843.	4.4	93
133	Microbial communities biostimulated by ethanol during uranium (VI) bioremediation in contaminated sediment as shown by stable isotope probing. Frontiers of Environmental Science and Engineering, 2015, 9, 453-464.	3.3	22
134	History and impact of RDP. RNA Biology, 2014, 11, 239-243.	1.5	19
135	Tackling soil diversity with the assembly of large, complex metagenomes. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 4904-4909.	3.3	305
136	Revealing the Bacterial Butyrate Synthesis Pathways by Analyzing (Meta)genomic Data. MBio, 2014, 5, e00889.	1.8	829
137	Ribosomal Database Project: data and tools for high throughput rRNA analysis. Nucleic Acids Research, 2014, 42, D633-D642.	6.5	3,768
138	Soil Microbial Community Responses to a Decade of Warming as Revealed by Comparative Metagenomics. Applied and Environmental Microbiology, 2014, 80, 1777-1786.	1.4	131
139	Stochasticity, succession, and environmental perturbations in a fluidic ecosystem. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, E836-45.	3.3	595
140	Role of Tetracycline Speciation in the Bioavailability to <i>Escherichia coli</i> for Uptake and Expression of Antibiotic Resistance. Environmental Science & Technology, 2014, 48, 4893-4900.	4.6	57
141	Editorial overview: Ecology and industrial microbiology. Current Opinion in Microbiology, 2014, 19, v-vii.	2.3	2
142	Stability, genotypic and phenotypic diversity of <scp><i>S</i></scp> <i>hewanella baltica</i> in the redox transition zone of the <scp>B</scp> altic <scp>S</scp> ea. Environmental Microbiology, 2014, 16, 1854-1866.	1.8	26
143	Fungal Community Structure in Disease Suppressive Soils Assessed by 28S LSU Gene Sequencing. PLoS ONE, 2014, 9, e93893.	1.1	140
144	Microbial Diversity of a Mediterranean Soil and Its Changes after Biotransformed Dry Olive Residue Amendment. PLoS ONE, 2014, 9, e103035.	1.1	52

#	Article	IF	CITATIONS
145	Fungal Diversity in Permafrost and Tallgrass Prairie Soils under Experimental Warming Conditions. Applied and Environmental Microbiology, 2013, 79, 7063-7072.	1.4	66
146	Effect of storage conditions on the stability and fermentability of enzymatic lignocellulosic hydrolysate. Bioresource Technology, 2013, 147, 212-220.	4.8	19
147	Ecological Patterns of <i>nifH</i> Genes in Four Terrestrial Climatic Zones Explored with Targeted Metagenomics Using FrameBot, a New Informatics Tool. MBio, 2013, 4, e00592-13.	1.8	279
148	FunGene: the functional gene pipeline and repository. Frontiers in Microbiology, 2013, 4, 291.	1.5	518
149	Diverse and abundant antibiotic resistance genes in Chinese swine farms. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 3435-3440.	3.3	1,925
150	Conversion of the Amazon rainforest to agriculture results in biotic homogenization of soil bacterial communities. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 988-993.	3.3	481
151	Recently Deglaciated High-Altitude Soils of the Himalaya: Diverse Environments, Heterogenous Bacterial Communities and Long-Range Dust Inputs from the Upper Troposphere. PLoS ONE, 2013, 8, e76440.	1.1	66
152	Denitrifying Bacteria from the Genus Rhodanobacter Dominate Bacterial Communities in the Highly Contaminated Subsurface of a Nuclear Legacy Waste Site. Applied and Environmental Microbiology, 2012, 78, 1039-1047.	1.4	184
153	Genome Sequencing of Five Shewanella baltica Strains Recovered from the Oxic-Anoxic Interface of the Baltic Sea. Journal of Bacteriology, 2012, 194, 1236-1236.	1.0	19
154	In-feed antibiotic effects on the swine intestinal microbiome. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 1691-1696.	3.3	942
155	Soil microbial communities under model biofuel cropping systems in southern Wisconsin, USA: Impact of crop species and soil properties. Applied Soil Ecology, 2012, 54, 24-31.	2.1	78
156	Minimum information about a marker gene sequence (MIMARKS) and minimum information about any (x) sequence (MIxS) specifications. Nature Biotechnology, 2011, 29, 415-420.	9.4	608
157	Genome sequencing of environmental <i>Escherichia coli</i> expands understanding of the ecology and speciation of the model bacterial species. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 7200-7205.	3.3	279
158	Genomic analysis of the phenylacetyl-CoA pathway in Burkholderia xenovorans LB400. Archives of Microbiology, 2011, 193, 641-650.	1.0	5
159	Fnr (EtrA) acts as a fine-tuning regulator of anaerobic metabolism in Shewanella oneidensisMR-1. BMC Microbiology, 2011, 11, 64.	1.3	30
160	Large-Scale Comparative Phenotypic and Genomic Analyses Reveal Ecological Preferences of Shewanella Species and Identify Metabolic Pathways Conserved at the Genus Level. Applied and Environmental Microbiology, 2011, 77, 5352-5360.	1.4	21
161	Bacterial community comparisons by taxonomy-supervised analysis independent of sequence alignment and clustering. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 14637-14642.	3.3	87
162	Bacterial Communities in the Rhizosphere of Biofuel Crops Grown on Marginal Lands as Evaluated by 16S rRNA Gene Pyrosequences. Bioenergy Research, 2010, 3, 20-27.	2.2	40

JAMES M TIEDJE

#	Article	IF	CITATIONS
163	Environmentally relevant parameters affecting PCB degradation: carbon source- and growth phase-mitigated effects of the expression of the biphenyl pathway and associated genes in Burkholderia xenovorans LB400. Biodegradation, 2010, 21, 147-156.	1.5	31
164	DNA encoding for an efficient 'Omics processing. Computer Methods and Programs in Biomedicine, 2010, 100, 175-190.	2.6	0
165	Impacts of <i>Shewanella oneidensis c</i> â€ŧype cytochromes on aerobic and anaerobic respiration. Microbial Biotechnology, 2010, 3, 455-466.	2.0	91
166	Gene-targeted-metagenomics reveals extensive diversity of aromatic dioxygenase genes in the environment. ISME Journal, 2010, 4, 279-285.	4.4	121
167	Significant Association between Sulfate-Reducing Bacteria and Uranium-Reducing Microbial Communities as Revealed by a Combined Massively Parallel Sequencing-Indicator Species Approach. Applied and Environmental Microbiology, 2010, 76, 6778-6786.	1.4	102
168	Identification of Potential Therapeutic Targets for Burkholderia cenocepacia by Comparative Transcriptomics. PLoS ONE, 2010, 5, e8724.	1.1	45
169	Mapping the <i>Burkholderia cenocepacia</i> niche response via high-throughput sequencing. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 3976-3981.	3.3	233
170	BEsTRF: a tool for optimal resolution of terminal-restriction fragment length polymorphism analysis based on user-defined primer-enzyme-sequence databases. Bioinformatics, 2009, 25, 1556-1558.	1.8	10
171	Advantages of the metagenomic approach for soil exploration: reply from Vogel et al Nature Reviews Microbiology, 2009, 7, 756-757.	13.6	35
172	TerraGenome: a consortium for the sequencing of a soil metagenome. Nature Reviews Microbiology, 2009, 7, 252-252.	13.6	199
173	Comparative systems biology across an evolutionary gradient within the <i>Shewanella</i> genus. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 15909-15914.	3.3	96
174	Microbial Community Analysis using RDP II (Ribosomal Database Project II):Methods, Tools and New Advances. Environmental Engineering Research, 2009, 14, 3-9.	1.5	10
175	Microarray-based whole-genome hybridization as a tool for determining procaryotic species relatedness. ISME Journal, 2008, 2, 642-655.	4.4	14
176	Towards environmental systems biology of Shewanella. Nature Reviews Microbiology, 2008, 6, 592-603.	13.6	829
177	In Situ-Synthesized Virulence and Marker Gene Biochip for Detection of Bacterial Pathogens in Water. Applied and Environmental Microbiology, 2008, 74, 2200-2209.	1.4	44
178	Development and Experimental Validation of a Predictive Threshold Cycle Equation for Quantification of Virulence and Marker Genes by High-Throughput Nanoliter-Volume PCR on the OpenArray Platform. Applied and Environmental Microbiology, 2008, 74, 3831-3838.	1.4	77
179	Microbes in the Energy Grid. Science, 2008, 320, 985-985.	6.0	10
180	Nail^ve Bayesian Classifier for Rapid Assignment of rRNA Sequences into the New Bacterial Taxonomy. Applied and Environmental Microbiology, 2007, 73, 5261-5267.	1.4	17,125

#	Article	IF	CITATIONS
181	Respiratory Nitrate Ammonification by Shewanella oneidensis MR-1. Journal of Bacteriology, 2007, 189, 656-662.	1.0	102
182	DNA–DNA hybridization values and their relationship to whole-genome sequence similarities. International Journal of Systematic and Evolutionary Microbiology, 2007, 57, 81-91.	0.8	3,968
183	Microbial reductive dehalogenation in Antarctic melt pond sediments. Antarctic Science, 2007, 19, 411-416.	0.5	3
184	Prokaryotic taxonomy and phylogeny in the genomic era: advancements and challenges ahead. Current Opinion in Microbiology, 2007, 10, 504-509.	2.3	403
185	Multiscale responses of microbial life to spatial distance and environmental heterogeneity in a patchy ecosystem. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 2761-2766.	3.3	376
186	Biogeography: An Emerging Cornerstone for Understanding Prokaryotic Diversity, Ecology, and Evolution. Microbial Ecology, 2007, 53, 197-207.	1.4	228
187	The bacterial species definition in the genomic era. Philosophical Transactions of the Royal Society B: Biological Sciences, 2006, 361, 1929-1940.	1.8	550
188	Diversity of oxygen and N-oxide regulation of nitrite reductases in denitrifying bacteria. FEMS Microbiology Letters, 2006, 156, 55-60.	0.7	23
189	On-chip non-equilibrium dissociation curves and dissociation rate constants as methods to assess specificity of oligonucleotide probes. Nucleic Acids Research, 2006, 34, e26-e26.	6.5	61
190	Degradation of Aroclor 1242 Dechlorination Products in Sediments by Burkholderia xenovorans LB400(ohb) and Rhodococcus sp. Strain RHA1(fcb). Applied and Environmental Microbiology, 2006, 72, 2476-2482.	1.4	78
191	Toward a More Robust Assessment of Intraspecies Diversity, Using Fewer Genetic Markersâ–¿. Applied and Environmental Microbiology, 2006, 72, 7286-7293.	1.4	196
192	Shewanella loihica sp. nov., isolated from iron-rich microbial mats in the Pacific Ocean. International Journal of Systematic and Evolutionary Microbiology, 2006, 56, 1911-1916.	0.8	109
193	Burkholderia xenovorans LB400 harbors a multi-replicon, 9.73-Mbp genome shaped for versatility. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 15280-15287.	3.3	339
194	Coping with Polychlorinated Biphenyl (PCB) Toxicity: Physiological and Genome-Wide Responses of Burkholderia xenovorans LB400 to PCB-Mediated Stress. Applied and Environmental Microbiology, 2006, 72, 6607-6614.	1.4	57
195	Characterization of potential stress responses in ancient Siberian permafrost psychroactive bacteria. FEMS Microbiology Ecology, 2005, 53, 103-115.	1.3	106
196	Towards a Genome-Based Taxonomy for Prokaryotes. Journal of Bacteriology, 2005, 187, 6258-6264.	1.0	966
197	Genomic insights that advance the species definition for prokaryotes. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 2567-2572.	3.3	1,869
198	Comparative Analysis of Differentially Expressed Genes in Shewanella oneidensis MR-1 following Exposure to UVC, UVB, and UVA Radiation. Journal of Bacteriology, 2005, 187, 3556-3564.	1.0	70

#	Article	IF	CITATIONS
199	Potential of DNA microarrays for developing parallel detection tools (PDTs) for microorganisms relevant to biodefense and related research needs. Biosensors and Bioelectronics, 2004, 20, 668-683.	5.3	45
200	Classification of the biphenyl- and polychlorinated biphenyl-degrading strain LB400T and relatives as Burkholderia xenovorans sp. nov International Journal of Systematic and Evolutionary Microbiology, 2004, 54, 1677-1681.	0.8	171
201	Validation of a more sensitive method for using spotted oligonucleotide DNA microarrays for functional genomics studies on bacterial communities. Environmental Microbiology, 2003, 5, 933-943.	1.8	87
202	Agromyces albus sp. nov., isolated from a plant (Androsace sp.). International Journal of Systematic and Evolutionary Microbiology, 2003, 53, 1435-1438.	0.8	38
203	Quantitative Detection of Microbial Genes by Using DNA Microarrays. Applied and Environmental Microbiology, 2002, 68, 1425-1430.	1.4	171
204	Spatial and Resource Factors Influencing High Microbial Diversity in Soil. Applied and Environmental Microbiology, 2002, 68, 326-334.	1.4	599
205	Use of both 16S rRNA and engineered functional genes with real-time PCR to quantify an engineered, PCB-degrading Rhodococcus in soil. Journal of Microbiological Methods, 2002, 51, 181-189.	0.7	26
206	Shewanella—the environmentally versatile genome. Nature Biotechnology, 2002, 20, 1093-1094.	9.4	102
207	Development of a Rhodococcus Recombinant Strain for Degradation of Products from Anaerobic Dechlorination of PCBs. Environmental Science & amp; Technology, 2001, 35, 663-668.	4.6	42
208	Factors Controlling the Rate of DDE Dechlorination to DDMU in Palos Verdes Margin Sediments under Anaerobic Conditions. Environmental Science & amp; Technology, 2001, 35, 286-291.	4.6	65
209	Bacterial Species Determination from DNA-DNA Hybridization by Using Genome Fragments and DNA Microarrays. Applied and Environmental Microbiology, 2001, 67, 3677-3682.	1.4	197
210	Development and Evaluation of Functional Gene Arrays for Detection of Selected Genes in the Environment. Applied and Environmental Microbiology, 2001, 67, 5780-5790.	1.4	373
211	Flexible Community Structure Correlates with Stable Community Function in Methanogenic Bioreactor Communities Perturbed by Glucose. Applied and Environmental Microbiology, 2000, 66, 4058-4067.	1.4	302
212	Biogeography and Degree of Endemicity of Fluorescent Pseudomonas Strains in Soil. Applied and Environmental Microbiology, 2000, 66, 5448-5456.	1.4	429
213	Soil Bacterial Community Shift Correlated with Change from Forest to Pasture Vegetation in a Tropical Soil. Applied and Environmental Microbiology, 1999, 65, 3622-3626.	1.4	194
214	Degradation of anaerobic reductive dechlorination products of Aroclor 1242 by four aerobic bacteria. Biodegradation, 1999, 10, 363-371.	1.5	70
215	Environmental Risk Assessment of Trifluoroacetic Acid. Human and Ecological Risk Assessment (HERA), 1999, 5, 59-124.	1.7	128
216	Cloning, Expression, and Nucleotide Sequence of the <i>Pseudomonas aeruginosa</i> 142 <i>ohb</i> Genes Coding for Oxygenolytic <i>ortho</i> Dehalogenation of Halobenzoates. Applied and Environmental Microbiology, 1999, 65, 2151-2162.	1.4	60

JAMES M TIEDJE

#	Article	lF	CITATIONS
217	Construction and Characterization of Two Recombinant Bacteria That Grow on <i>ortho</i> - and <i>para</i> -Substituted Chlorobiphenyls. Applied and Environmental Microbiology, 1999, 65, 2163-2169.	1.4	86
218	Reductive Dechlorination of DDE to DDMU in Marine Sediment Microcosms. Science, 1998, 280, 722-724.	6.0	145
219	Effects of pH and Oxygen and Ammonium Concentrations on the Community Structure of Nitrifying Bacteria from Wastewater. Applied and Environmental Microbiology, 1998, 64, 3584-3590.	1.4	180
220	Characterization of the Dominant and Rare Members of a Young Hawaiian Soil Bacterial Community with Small-Subunit Ribosomal DNA Amplified from DNA Fractionated on the Basis of Its Guanine and Cytosine Composition. Applied and Environmental Microbiology, 1998, 64, 1283-1289.	1.4	108
221	Phylogenetic diversity of a bacterial community determined from Siberian tundra soil DNA. Microbiology (United Kingdom), 1997, 143, 3913-3919.	0.7	213
222	Chlorophenol dechlorination and subsequent degradation in denitrifying microcosms fed low concentrations of nitrate. Biodegradation, 1997, 7, 425-434.	1.5	33
223	Tetrachloroethene and 3-chlorobenzoate dechlorination activities are co-induced inDesulfomonile tiedjei DCB-1. Biodegradation, 1995, 6, 167-172.	1.5	54
224	Bacterial community fingerprinting of amplified 16S and 16–23S ribosomal DNA gene sequences and restriction endonuclease analysis(ARDRA). , 1995, , 289-296.		116
225	Denitrification in Soil Aggregates Analyzed with Microsensors for Nitrous Oxide and Oxygen. Soil Science Society of America Journal, 1994, 58, 1691-1698.	1.2	135
226	Dechlorination of Four Commercial Polychlorinated Biphenyl Mixtures (Aroclors) by Anaerobic Microorganisms from Sediments. Applied and Environmental Microbiology, 1990, 56, 2360-2369.	1.4	291
227	Deforestation alters denitrification in a lowland tropical rain forest. Nature, 1988, 336, 756-759.	13.7	98
228	Nitrous Oxide Production by Organisms Other than Nitrifiers or Denitrifiers. Applied and Environmental Microbiology, 1982, 44, 1342-1348.	1.4	172
229	Anaerobic Bioremediation: Microbiology, Principles, and Applications. Agronomy, 0, , 339-396.	0.2	2
230	Genomic and Expression Analyses of Cold-Adapted Microorganisms. , 0, , 126-155.		22