Shuang Dong

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/6698507/shuang-dong-publications-by-year.pdf

Version: 2024-04-28

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

23 790 14 24 g-index

24 969 6.1 4.2 ext. papers ext. citations avg, IF L-index

#	Paper	IF	Citations
23	Three-dimensional loofah sponge derived amorphous carbon-graphene aerogel via one-pot synthesis for high-performance electrochemical sensor for hydrogen peroxide and dopamine. <i>Journal of Electroanalytical Chemistry</i> , 2022 , 911, 116236	4.1	O
22	Polymer Composites Completely Derived from Waste: The Crystalline Structure and the Mechanical Enhancement Effect. <i>ACS Applied Polymer Materials</i> , 2021 , 3, 3679-3684	4.3	3
21	Facile Approach to Fabricating Stretchable Conductors by Decorating Cheap Reduced Graphene Oxide with Silver Nanocrystals in Loofah Sponge Fibers. <i>ACS Applied Electronic Materials</i> , 2021 , 3, 912-9	26	
20	(Pd, Au, Ag) nanoparticles decorated well-ordered macroporous carbon for electrochemical sensing applications. <i>Journal of Electroanalytical Chemistry</i> , 2021 , 897, 115562	4.1	3
19	Single-atom platinum or ruthenium on C4N as 2D high-performance electrocatalysts for oxygen reduction reaction. <i>Chemical Engineering Journal</i> , 2021 , 426, 131347	14.7	14
18	Sulfate-reducing bacteria respiration approach to fabricating flexible N,S-reduced graphene oxide thin film electrode for in situ cancer biomarker detection. <i>Journal of Electroanalytical Chemistry</i> , 2020 , 859, 113867	4.1	4
17	Polymeric Thermoelectric Composites by Polypyrrole and Cheap Reduced Graphene Oxide in Towel-Gourd Sponge Fibers. <i>ACS Omega</i> , 2020 , 5, 29955-29962	3.9	8
16	Polypyrrole and polypyrrole@MnO2 nanowires grown on graphene foam for asymmetric supercapacitor. <i>Materials Express</i> , 2020 , 10, 1308-1316	1.3	2
15	Fabrication of polyamide 6/reduced graphene oxide nano-composites by conductive cellulose skeleton structure and its conductive behavior. <i>Composites Part B: Engineering</i> , 2019 , 167, 533-543	10	17
14	Preparation, characterization and calcium release evaluation in vitro of casein phosphopeptides-soluble dietary fibers copolymers as calcium delivery system. <i>Food Chemistry</i> , 2018 , 245, 262-269	8.5	18
13	Graphene paper supported MoS nanocrystals monolayer with Cu submicron-buds: High-performance flexible platform for sensing in sweat. <i>Analytical Biochemistry</i> , 2018 , 543, 82-89	3.1	37
12	Effects of Dielectric Barrier Discharge (DBD) Cold Plasma Treatment on Physicochemical and Functional Properties of Peanut Protein. <i>Food and Bioprocess Technology</i> , 2018 , 11, 344-354	5.1	75
11	Preparation, characterization and functional evaluation of chitosan-based films with zein coatings produced by cold plasma. <i>Carbohydrate Polymers</i> , 2018 , 202, 39-46	10.3	32
10	Inkjet Printing Synthesis of Sandwiched Structured Ionic Liquid-Carbon Nanotube-Graphene Film: Toward Disposable Electrode for Sensitive Heavy Metal Detection in Environmental Water Samples. <i>Industrial & Engineering Chemistry Research</i> , 2017 , 56, 1696-1703	3.9	16
9	Hollow Nitrogen-Doped Carbon Spheres with FeO Nanoparticles Encapsulated as a Highly Active Oxygen-Reduction Catalyst. <i>ACS Applied Materials & District Mat</i>	9.5	102
8	Purification, antitumor and immunomodulatory activity of polysaccharides from soybean residue fermented with Morchella esculenta. <i>International Journal of Biological Macromolecules</i> , 2017 , 96, 26-34	,7.9	74
7	Behavior of Zein in Aqueous Ethanol under Atmospheric Pressure Cold Plasma Treatment. <i>Journal of Agricultural and Food Chemistry</i> , 2017 , 65, 7352-7360	5.7	35

LIST OF PUBLICATIONS

6	Effects of Dielectric Barrier Discharges (DBD) Cold Plasma Treatment on Physicochemical and Structural Properties of Zein Powders. <i>Food and Bioprocess Technology</i> , 2017 , 10, 434-444	5.1	63
5	Real-time tracking of hydrogen peroxide secreted by live cells using MnO2 nanoparticles intercalated layered doubled hydroxide nanohybrids. <i>Analytica Chimica Acta</i> , 2015 , 898, 34-41	6.6	38
4	High loading MnO2 nanowires on graphene paper: facile electrochemical synthesis and use as flexible electrode for tracking hydrogen peroxide secretion in live cells. <i>Analytica Chimica Acta</i> , 2015 , 853, 200-206	6.6	123
3	One-step electrochemical synthesis of three-dimensional graphene foam loaded nickeldobalt hydroxides nanoflakes and its electrochemical properties. <i>Electrochimica Acta</i> , 2015 , 152, 195-201	6.7	52
2	Mesoporous Mn3O4©oO coreBhell spheres wrapped by carbon nanotubes: a high performance catalyst for the oxygen reduction reaction and CO oxidation. <i>Journal of Materials Chemistry A</i> , 2014 , 2, 3794	13	73
1	Modification of graphene by polypyrrole and ionic liquids for dual-band electromagnetic interference shielding hydrogels. <i>Journal of Materials Science</i> ,1	4.3	1