Saif A Khan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6697863/publications.pdf

Version: 2024-02-01

all docs

47 2,316 24 45 papers citations h-index g-index

48 48 48 48 2470

times ranked

citing authors

docs citations

#	Article	IF	CITATIONS
1	Robust continuous synthesis and in situ deposition of catalytically active nanoparticles on colloidal support materials in a triphasic flow millireactor. Chemical Engineering Journal, 2022, 430, 132778.	12.7	4
2	Creating texturally tuneable, low calorie and palatable noodle-like food assemblies via microfluidics. Food Hydrocolloids, 2022, 127, 107544.	10.7	4
3	Control of Drug-Excipient Particle Attributes with Droplet Microfluidic-based Extractive Solidification Enables Improved Powder Rheology. Pharmaceutical Research, 2022, 39, 411.	3.5	7
4	Rapid, Automated Measurement of Dynamic Size Distributions and Size-Dependent Growth Rates of Crystal Ensembles within Microfluidic Flow Cells. Crystal Growth and Design, 2022, 22, 2869-2879.	3.0	1
5	Continuous Embedded Droplet Printing in Yieldâ€Stress Fluids for Pharmaceutical Drug Particle Synthesis. Advanced Materials Technologies, 2021, 6, 2001245.	5.8	7
6	Automated synthesis of prexasertib and derivatives enabled by continuous-flow solid-phase synthesis. Nature Chemistry, 2021, 13, 451-457.	13.6	51
7	Multiâ€Fidelity Highâ€Throughput Optimization of Electrical Conductivity in P3HTâ€CNT Composites. Advanced Functional Materials, 2021, 31, 2102606.	14.9	20
8	Benchmarking the performance of Bayesian optimization across multiple experimental materials science domains. Npj Computational Materials, 2021, 7, .	8.7	62
9	Recent Advances in Co-processed APIs and Proposals for Enabling Commercialization of These Transformative Technologies. Molecular Pharmaceutics, 2020, 17, 2232-2244.	4.6	41
10	Embedded droplet printing in yield-stress fluids. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 5671-5679.	7.1	52
11	Cloud-inspired multiple scattering for light intensified photochemical flow reactors. Reaction Chemistry and Engineering, 2020, 5, 1058-1063.	3.7	11
12	Microfluidic Extractive Crystallization for Spherical Drug/Drug-Excipient Microparticle Production. Organic Process Research and Development, 2019, 23, 375-381.	2.7	17
13	Highly efficient CO ₂ capture by mixed matrix membranes containing three-dimensional covalent organic framework fillers. Journal of Materials Chemistry A, 2019, 7, 4549-4560.	10.3	108
14	Oxidant free conversion of alcohols to nitriles over Ni-based catalysts. Catalysis Science and Technology, 2019, 9, 86-96.	4.1	38
15	Mesoscale triphasic flow reactors for metal catalyzed gas–liquid reactions. Reaction Chemistry and Engineering, 2019, 4, 1331-1340.	3.7	21
16	Direct visualization of the ouzo zone through aggregation-induced dye emission for the synthesis of highly monodispersed polymeric nanoparticles. Materials Chemistry Frontiers, 2019, 3, 1375-1384.	5.9	21
17	Facile synthesis of lanthanide doped yttria nanophosphors by a simple microplasma-assisted process. Reaction Chemistry and Engineering, 2019, 4, 891-898.	3.7	17
18	Continuous Flow Droplet-Based Crystallization Platform for Producing Spherical Drug Microparticles. Organic Process Research and Development, 2019, 23, 93-101.	2.7	15

#	Article	IF	Citations
19	Continuous Flow Synthesis of Superparamagnetic Nanoparticles in Reverse Miniemulsion Systems. Colloids and Interface Science Communications, 2019, 28, 1-4.	4.1	17
20	Synthesis of yttrium oxide nanoparticles via a facile microplasma-assisted process. Chemical Engineering Science, 2018, 178, 157-166.	3.8	50
21	Electrically controlled mass transport into microfluidic droplets from nanodroplet carriers with application in controlled nanoparticle flow synthesis. Lab on A Chip, 2018, 18, 1330-1340.	6.0	27
22	Embedding liquid lasers within or around aqueous microfluidic droplets. Lab on A Chip, 2018, 18, 197-205.	6.0	12
23	Multi-color lasing in chemically open droplet cavities. Scientific Reports, 2018, 8, 14088.	3.3	14
24	Bottom-up Structural Design of Crystalline Drug-Excipient Composite Microparticles via Microfluidic Droplet-based Processing. Crystal Growth and Design, 2017, 17, 3030-3039.	3.0	15
25	Three-phase microfluidic reactor networks – Design, modeling and application to scaled-out nanoparticle-catalyzed hydrogenations with online catalyst recovery and recycle. Chemical Engineering Science, 2017, 169, 117-127.	3.8	31
26	Robust, non-fouling liters-per-day flow synthesis of ultra-small catalytically active metal nanoparticles in a single-channel reactor. Reaction Chemistry and Engineering, 2017, 2, 636-641.	3.7	24
27	Droplet microfluidics with a nanoemulsion continuous phase. Lab on A Chip, 2016, 16, 2694-2700.	6.0	14
28	Highly Selective, Kinetically Driven Polymorphic Selection in Microfluidic Emulsion-Based Crystallization and Formulation. Crystal Growth and Design, 2015, 15, 212-218.	3.0	28
29	Prediction of the shape and pressure drop of Taylor bubbles in circular tubes. Microfluidics and Nanofluidics, 2015, 19, 1221-1233.	2.2	23
30	Rapid nanoparticle-catalyzed hydrogenations in triphasic millireactors with facile catalyst recovery. Green Chemistry, 2014, 16, 4654-4658.	9.0	26
31	Dualâ€Stage Continuousâ€Flow Seedless Microfluidic Synthesis of Anisotropic Gold Nanocrystals. Particle and Particle Systems Characterization, 2014, 31, 429-432.	2.3	24
32	Simultaneous Spherical Crystallization and Co-Formulation of Drug(s) and Excipient from Microfluidic Double Emulsions. Crystal Growth and Design, 2014, 14, 140-146.	3.0	47
33	Dynamically tunable nanoparticle engineering enabled by short contact-time microfluidic synthesis with a reactive gas. RSC Advances, 2013, 3, 2897.	3.6	29
34	Hierarchical materials synthesis at soft all-aqueous interfaces. Soft Matter, 2012, 8, 3924.	2.7	5
35	Controlling bubbles using bubbles—microfluidic synthesis of ultra-small gold nanocrystals with gas-evolving reducing agents. Lab on A Chip, 2012, 12, 1807.	6.0	54
36	Spherical Crystallization of Glycine from Monodisperse Microfluidic Emulsions. Crystal Growth and Design, 2012, 12, 3977-3982.	3.0	61

#	Article	IF	Citations
37	Filtering microfluidic bubble trains at a symmetric junction. Lab on A Chip, 2012, 12, 582-588.	6.0	29
38	Firefliesâ€Onâ€Aâ€Chip: (Ionic Liquid)–Aqueous Microdroplets for Biphasic Chemical Analysis. Small, 2012, 8, 2152-2157.	10.0	10
39	Microfluidic continuous magnetophoretic protein separation using nanoparticle aggregates. Microfluidics and Nanofluidics, $2011, 11, 429-438$.	2.2	39
40	Plasmonic Nanoshell Synthesis in Microfluidic Composite Foams. Nano Letters, 2010, 10, 3757-3763.	9.1	89
41	lonic liquid-based compound droplet microfluidics for â€~on-drop' separations and sensing. Lab on A Chip, 2010, 10, 2458.	6.0	38
42	Microfluidics: Small 24/2009. Small, 2009, 5, n/a-n/a.	10.0	0
43	Dropletâ€Based Microfluidic Synthesis of Anisotropic Metal Nanocrystals. Small, 2009, 5, 2828-2834.	10.0	219
44	Microfluidic emulsions with dynamic compound drops. Lab on A Chip, 2009, 9, 1840.	6.0	31
45	Transport and reaction in microscale segmented gas–liquid flow. Lab on A Chip, 2004, 4, 278-286.	6.0	465
46	Microfluidic Synthesis of Colloidal Silica. Langmuir, 2004, 20, 8604-8611.	3.5	397
47	3D-printed capillary force trap reactors (CFTRs) for multiphase catalytic flow chemistry. Reaction Chemistry and Engineering, 0, , .	3.7	1