Loretta C Johnson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6697321/publications.pdf

Version: 2024-02-01

41 papers 2,686 citations

³⁹⁴⁴²¹
19
h-index

37 g-index

43 all docs 43 docs citations

43 times ranked

3080 citing authors

#	Article	lF	CITATIONS
1	Reciprocal transplant gardens as gold standard to detect local adaptation in grassland species: New opportunities moving into the 21st century. Journal of Ecology, 2022, 110, 1054-1071.	4.0	25
2	Bacterial but Not Fungal Rhizosphere Community Composition Differ among Perennial Grass Ecotypes under Abiotic Environmental Stress. Microbiology Spectrum, 2022, 10, e0239121.	3.0	8
3	Adaptive genetic potential and plasticity of trait variation in the foundation prairie grass <i>Andropogon gerardii</i> across the US Great Plains' climate gradient: Implications for climate change and restoration. Evolutionary Applications, 2020, 13, 2333-2356.	3.1	12
4	No Difference in Herbivory Preferences Among Ecotypes of Big Bluestem (Andropogon gerardii). Transactions of the Kansas Academy of Science, 2020, 123, 151.	0.1	0
5	Restoring grassland in the context of climate change. , 2019, , 310-322.		5
6	Local adaptation, genetic divergence, and experimental selection in a foundation grass across the US Great Plains' climate gradient. Global Change Biology, 2019, 25, 850-868.	9.5	24
7	Ecological Genomics: genes in ecology and ecology in genes. Genome, 2018, 61, v-vii.	2.0	5
8	Drought tolerance in ecotypes of big bluestem (Andropogon gerardii) relates to above-ground surface area: Results from a common garden experiment. Flora: Morphology, Distribution, Functional Ecology of Plants, 2018, 246-247, 52-60.	1.2	4
9	Genetic and environmental influences on stomates of big bluestem (Andropogon gerardii). Environmental and Experimental Botany, 2018, 155, 477-487.	4.2	2
10	Phenotypic distribution models corroborate species distribution models: A shift in the role and prevalence of a dominant prairie grass in response to climate change. Global Change Biology, 2017, 23, 4365-4375.	9.5	36
11	Development of near-infrared spectroscopy models for quantitative determination of cellulose and hemicellulose contents of big bluestem. Renewable Energy, 2017, 109, 101-109.	8.9	18
12	Effects of Extreme Drought on Photosynthesis and Water Potential of <i>Andropogon gerardii</i> (Big Bluestem) Ecotypes in Common Gardens Across Kansas. Transactions of the Kansas Academy of Science, 2017, 120, 1-16.	0.1	14
13	Plant community response to regional sources of dominant grasses in grasslands restored across a longitudinal gradient. Ecosphere, 2016, 7, e01329.	2.2	11
14	Ecotypic variation in forage nutrient value of a dominant prairie grass across a precipitation gradient. Grassland Science, 2016, 62, 233-242.	1.1	6
15	Inferential considerations for low-count RNA-seq transcripts: a case study on the dominant prairie grass Andropogon gerardii. BMC Genomics, 2016, 17, 140.	2.8	18
16	Intraspecific variation of a dominant grass and local adaptation in reciprocal garden communities along a <scp>US</scp> Great Plains' precipitation gradient: implications for grassland restoration with climate change. Evolutionary Applications, 2015, 8, 705-723.	3.1	42
17	Comparison of big bluestem with other native grasses: Chemical composition and biofuel yield. Energy, 2015, 83, 358-365.	8.8	15
18	Big bluestem as a bioenergy crop: A review. Renewable and Sustainable Energy Reviews, 2015, 52, 740-756.	16.4	25

#	Article	IF	CITATIONS
19	The role of ecotypic variation and the environment on biomass and nitrogen in a dominant prairie grass. Ecology, 2015, 96, 2433-2445.	3.2	25
20	Ecotypes of an ecologically dominant prairie grass (<i><scp>A</scp>ndropogon gerardii</i>) exhibit genetic divergence across the <scp>U</scp> . <scp>S</scp> . Midwest grasslands environmental gradient. Molecular Ecology, 2014, 23, 6011-6028.	3.9	50
21	Production of Autopolyploid Lowland Switchgrass Lines Through In Vitro Chromosome Doubling. Bioenergy Research, 2014, 7, 232-242.	3.9	20
22	Glucan Yield from Enzymatic Hydrolysis of Big Bluestem as Affected by Ecotype and Planting Location Along the Precipitation Gradient of the Great Plains. Bioenergy Research, 2014, 7, 799-810.	3.9	9
23	Fitness among population sources of a dominant species (Andropogon gerardii Vitman) used in prairie restoration1. Journal of the Torrey Botanical Society, 2013, 140, 269-279.	0.3	11
24	Environmental and genetic variation in leaf anatomy among populations of <i>Andropogon gerardii</i> (Poaceae) along a precipitation gradient. American Journal of Botany, 2013, 100, 1957-1968.	1.7	47
25	Hydrothermal conversion of big bluestem for bio-oil production: The effect of ecotype and planting location. Bioresource Technology, 2012, 116, 413-420.	9.6	22
26	Chemical and elemental composition of big bluestem as affected by ecotype and planting location along the precipitation gradient of the Great Plains. Industrial Crops and Products, 2012, 40, 210-218.	5.2	19
27	Altered Ecosystem Processes as a Consequence of Juniperus virginiana L. Encroachment into North American Tallgrass Prairie. Ecological Studies, 2008, , 170-187.	1.2	23
28	Can rDNA analyses of diverse fungal communities in soil and roots detect effects of environmental manipulationsâ€"a case study from tallgrass prairie. Mycologia, 2005, 97, 1177-1194.	1.9	12
29	Nitrogen enrichment causes minimal changes in arbuscular mycorrhizal colonization but shifts community composition?evidence from rDNA data. Biology and Fertility of Soils, 2005, 41, 217-224.	4.3	82
30	VEGETATION-MEDIATED CHANGES IN MICROCLIMATE REDUCE SOIL RESPIRATION AS WOODLANDS EXPAND INTO GRASSLANDS. Ecology, 2004, 85, 3348-3361.	3.2	108
31	Expansion ofJuniperus virginianaL. in the Great Plains: Changes in soil organic carbon dynamics. Global Biogeochemical Cycles, 2003, 17, n/a-n/a.	4.9	51
32	Pulse-labeling studies of carbon cycling in arctic tundra ecosystems: Contribution of photosynthates to soil organic matter. Global Biogeochemical Cycles, 2002, 16, 48-1-48-8.	4.9	24
33	Assessing the Rate, Mechanisms, and Consequences of the Conversion of Tallgrass Prairie to Juniperus virginiana Forest. Ecosystems, 2002, 5, 578-586.	3.4	250
34	FIRE AND GRAZING REGULATE BELOWGROUND PROCESSES IN TALLGRASS PRAIRIE. Ecology, 2001, 82, 3377-3389.	3.2	284
35	Fire and Grazing Regulate Belowground Processes in Tallgrass Prairie. Ecology, 2001, 82, 3377.	3.2	8
36	PLANT CARBON–NUTRIENT INTERACTIONS CONTROL CO2EXCHANGE IN ALASKAN WET SEDGE TUNDRA ECOSYSTEMS. Ecology, 2000, 81, 453-469.	3.2	105

#	Article	IF	CITATIONS
37	Nitrogen limitation in dryland ecosystems: Responses to geographical and temporal variation in precipitation. Biogeochemistry, 1999, 46, 247-293.	3.5	384
38	Title is missing!. Biogeochemistry, 1999, 46, 247-293.	3.5	141
39	The Keystone Role of Bison in North American Tallgrass Prairie. BioScience, 1999, 49, 39.	4.9	600
40	PREDICTING GROSS PRIMARY PRODUCTIVITY IN TERRESTRIAL ECOSYSTEMS. , 1997, 7, 882-894.		136
41	Predicting Gross Primary Productivity in Terrestrial Ecosystems. , 1997, 7, 882.		4