
Roberto Lent

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6697111/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Corpus callosum dysgenesis causes novel patterns of structural and functional brain connectivity. Brain Communications, 2021, 3, fcab057.	1.5	8
2	Direct Interhemispheric Cortical Communication via Thalamic Commissures: A New White-Matter Pathway in the Rodent Brain. Cerebral Cortex, 2021, 31, 4642-4651.	1.6	9
3	The Dynamics of Axon Bifurcation Development in the Cerebral Cortex of Typical and Acallosal Mice. Neuroscience, 2021, 477, 14-24.	1.1	4
4	Myelination of Callosal Axons Is Hampered by Early and Late Forelimb Amputation in Rats. Cerebral Cortex Communications, 2021, 2, tgaa090.	0.7	2
5	Microcephaly gene Cenpj regulates axonal growth in cortical neurons through microtubule destabilization. Journal of Neurochemistry, 2021, , .	2.1	0
6	Dynamic Interhemispheric Desynchronization in Marmosets and Humans With Disorders of the Corpus Callosum. Frontiers in Neural Circuits, 2020, 14, 612595.	1.4	4
7	Long-distance aberrant heterotopic connectivity in a mouse strain with a high incidence of callosal anomalies. NeuroImage, 2020, 217, 116875.	2.1	8
8	The reliability of the isotropic fractionator method for counting total cells and neurons. Journal of Neuroscience Methods, 2019, 326, 108392.	1.3	13
9	Early exercise induces long-lasting morphological changes in cortical and hippocampal neurons throughout of a sedentary period of rats. Scientific Reports, 2019, 9, 13684.	1.6	18
10	Cortical lateralization of cheirosensory processing in callosal dysgenesis. NeuroImage: Clinical, 2019, 23, 101808.	1.4	2
11	Lower limb amputees undergo long-distance plasticity in sensorimotor functional connectivity. Scientific Reports, 2019, 9, 2518.	1.6	33
12	Terminal Arbors of Callosal Axons Undergo Plastic Changes in Early-Amputated Rats. Cerebral Cortex, 2019, 29, 1460-1472.	1.6	5
13	Perinatal Asphyxia and Brain Development: Mitochondrial Damage Without Anatomical or Cellular Losses. Molecular Neurobiology, 2018, 55, 8668-8679.	1.9	11
14	The Absolute Number of Oligodendrocytes in the Adult Mouse Brain. Frontiers in Neuroanatomy, 2018, 12, 90.	0.9	77
15	From the Laboratory to the Classroom: The Potential of Functional Near-Infrared Spectroscopy in Educational Neuroscience. Frontiers in Psychology, 2018, 9, 1840.	1.1	28
16	Aerobic exercise in adolescence results in an increase of neuronal and non-neuronal cells and in mTOR overexpression in the cerebral cortex of rats. Neuroscience, 2017, 361, 108-115.	1.1	13
17	The Isotropic Fractionator as a Tool for Quantitative Analysis in Central Nervous System Diseases. Frontiers in Cellular Neuroscience, 2016, 10, 190.	1.8	12
18	The various forms of neuroplasticity: Biological bases of learning and teaching. Prospects, 2016, 46, 199-213.	1.3	10

#	Article	IF	CITATIONS
19	Relationship between seizure frequency and number of neuronal and non-neuronal cells in the hippocampus throughout the life of rats with epilepsy. Brain Research, 2016, 1634, 179-186.	1.1	34
20	Do age and sex impact on the absolute cell numbers of human brain regions?. Brain Structure and Function, 2016, 221, 3547-3559.	1.2	8
21	Maternal Exercise during Pregnancy Increases BDNF Levels and Cell Numbers in the Hippocampal Formation but Not in the Cerebral Cortex of Adult Rat Offspring. PLoS ONE, 2016, 11, e0147200.	1.1	65
22	Electrophysiological Correlates of Morphological Neuroplasticity in Human Callosal Dysgenesis. PLoS ONE, 2016, 11, e0152668.	1.1	13
23	Enhancing Motor Network Activity Using Real-Time Functional MRI Neurofeedback of Left Premotor Cortex. Frontiers in Behavioral Neuroscience, 2015, 9, 341.	1.0	69
24	How can development and plasticity contribute to understanding evolution of the human brain?. Frontiers in Human Neuroscience, 2015, 9, 208.	1.0	5
25	Sexual Dimorphism in the Human Olfactory Bulb: Females Have More Neurons and Glial Cells than Males. PLoS ONE, 2014, 9, e111733.	1.1	94
26	Structural and functional brain rewiring clarifies preserved interhemispheric transfer in humans born without the corpus callosum. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 7843-7848.	3.3	100
27	Cell number changes in Alzheimer's disease relate to dementia, not to plaques and tangles. Brain, 2013, 136, 3738-3752.	3.7	145
28	Automatic isotropic fractionation for large-scale quantitative cell analysis of nervous tissue. Journal of Neuroscience Methods, 2013, 212, 72-78.	1.3	16
29	Functional Expansion of Sensorimotor Representation and Structural Reorganization of Callosal Connections in Lower Limb Amputees. Journal of Neuroscience, 2012, 32, 3211-3220.	1.7	111
30	How many neurons do you have? Some dogmas of quantitative neuroscience under revision. European Journal of Neuroscience, 2012, 35, 1-9.	1.2	150
31	Changing numbers of neuronal and non-neuronal cells underlie postnatal brain growth in the rat. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 14108-14113.	3.3	338
32	Equal numbers of neuronal and nonneuronal cells make the human brain an isometrically scaledâ€up primate brain. Journal of Comparative Neurology, 2009, 513, 532-541.	0.9	1,628
33	Ephrinâ€A5 acts as a repulsive cue for migrating cortical interneurons. European Journal of Neuroscience, 2008, 28, 62-73.	1.2	72
34	The basic nonuniformity of the cerebral cortex. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 12593-12598.	3.3	137
35	Axons of callosal neurons bifurcate transiently at the white matter before consolidating an interhemispheric projection. European Journal of Neuroscience, 2007, 25, 1384-1394.	1.2	14
36	Neuroplasticity in Human Callosal Dysgenesis: A Diffusion Tensor Imaging Study. Cerebral Cortex, 2006, 17, 531-541.	1.6	126

#	Article	IF	CITATIONS
37	Cellular scaling rules for rodent brains. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 12138-12143.	3.3	413
38	Cellular and molecular tunnels surrounding the forebrain commissures of human fetuses. Journal of Comparative Neurology, 2005, 483, 375-382.	0.9	46
39	Isotropic Fractionator: A Simple, Rapid Method for the Quantification of Total Cell and Neuron Numbers in the Brain. Journal of Neuroscience, 2005, 25, 2518-2521.	1.7	475
40	Temporal and spatial regulation of chondroitin sulfate, radial glial cells, growing commissural axons, and other hippocampal efferents in developing hamsters. Journal of Comparative Neurology, 2004, 468, 217-232.	0.9	11
41	Cortical radial glial cells in human fetuses: Depth-correlated transformation into astrocytes. Journal of Neurobiology, 2003, 55, 288-298.	3.7	144
42	Diaphorase-positive neurons in the cingulate cortex of human fetuses during the second half of gestation. Anatomy and Embryology, 2002, 205, 29-35.	1.5	6
43	Inhibition of Alzheimer's disease βâ€amyloid aggregation, neurotoxicity, and in vivo deposition by nitrophenols: implications for Alzheimer's therapy. FASEB Journal, 2001, 15, 1297-1299.	0.2	117
44	Gap Junction-Mediated Coupling in the Postnatal Anterior Subventricular Zone. Developmental Neuroscience, 2000, 22, 34-43.	1.0	25
45	Migrating neurons cross a reelin-rich territory to form an organized tissue out of embryonic cortical slices. European Journal of Neuroscience, 2000, 12, 4536-4540.	1.2	11
46	Inhibition of Alzheimer's disease beta-amyloid aggregation, neurotoxicity and in vivo deposition. Anais Da Academia Brasileira De Ciencias, 2000, 72, 433-434.	0.3	0
47	Formation of cortical tissue from slices maintained in vitro: a model for radial and tangential migration studies. Anais Da Academia Brasileira De Ciencias, 2000, 72, 441-442.	0.3	0
48	Molecular tunnels and boundaries for growing axons in the anterior commissure of hamster embryos. Journal of Comparative Neurology, 1998, 399, 176-188.	0.9	46
49	Restricted distribution of S-phase cells in the anterior subventricular zone of the postnatal mouse forebrain. Anatomy and Embryology, 1998, 198, 205-211.	1.5	16
50	Ontogenesis of lateralized rotational behavior in hamsters: a time series study. Behavioural Brain Research, 1998, 92, 47-53.	1.2	11
51	Callosal neurons in the cingulate cortical plate and subplate of human fetuses. , 1997, 386, 60-70.		48
52	Lateralization of rotational behavior in developing and adult hamsters. Behavioural Brain Research, 1996, 75, 169-177.	1.2	8
53	The prenatal development of the anterior commissure in hamsters: pioneer fibers lead the way. Developmental Brain Research, 1993, 72, 59-66.	2.1	17
54	Bicommissural neurones in the cerebral cortex of developing hamsters. NeuroReport, 1992, 3, 873-876.	0.6	9

#	Article	IF	CITATIONS
55	Myelination of the cerebral commissures of the hamster, as revealed by a monoclonal antibody specific for oligodendrocytes. Developmental Brain Research, 1992, 66, 193-201.	2.1	16
56	Development of palecortical projections through the anterior commissure of hamsters adopts progressive, not regressive, strategies. Journal of Neurobiology, 1991, 22, 475-498.	3.7	19
57	Effects of prenatal irradiation on the development of cerebral cortex and corpus callosum of the mouse. Journal of Comparative Neurology, 1987, 264, 193-204.	0.9	38
58	Neuroanatomical effects of neonatal transection of the corpus callosum in hamsters. Journal of Comparative Neurology, 1984, 223, 548-555.	0.9	29
59	The organization of subcortical projections of the hamster's visual cortex. Journal of Comparative Neurology, 1982, 206, 227-242.	0.9	62
60	The brain of baby opossums. Trends in Neurosciences, 1981, 4, 84-87.	4.2	3
61	Plasticity of the ipsilateral retinotectal projection in early enucleated opossums: Changes in retinotopy and magnification factors. Neuroscience Letters, 1980, 18, 37-43.	1.0	22
62	Retinofugal projections in the opossum. an anterograde degeneration and radioautographic study. Brain Research, 1976, 107, 9-26.	1.1	40
63	Survival times and patterns of degeneration in the visual system of the opossum. Brain Research, 1974, 72, 294-299.	1.1	4