Sanjay K Srivastava

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6696943/publications.pdf

Version: 2024-02-01

77 papers

4,457 citations

94433 37 h-index 65 g-index

81 all docs

81 docs citations

81 times ranked 5979 citing authors

#	Article	IF	Citations
1	The evolutionary legacy of immune checkpoint inhibitors. Seminars in Cancer Biology, 2022, 86, 491-498.	9.6	37
2	Immune checkpoint proteins: Signaling mechanisms and molecular interactions in cancer immunotherapy. Seminars in Cancer Biology, 2022, 86, 137-150.	9.6	70
3	GABAA receptor agonist suppresses pediatric medulloblastoma progression by inhibiting PKA-Gli1 signaling axis. Molecular Therapy, 2022, , .	8.2	3
4	Drug repurposing: A novel therapeutic approach for pancreatic cancer. FASEB Journal, 2022, 36, .	0.5	0
5	Drug rechanneling: A novel paradigm for cancer treatment. Seminars in Cancer Biology, 2021, 68, 279-290.	9.6	28
6	Repurposing antipsychotics of the diphenylbutylpiperidine class for cancer therapy. Seminars in Cancer Biology, 2021, 68, 75-83.	9.6	46
7	Atovaquone Suppresses the Growth of Metastatic Triple-Negative Breast Tumors in Lungs and Brain by Inhibiting Integrin/FAK Signaling Axis. Pharmaceuticals, 2021, 14, 521.	3 . 8	9
8	Atovaquone Suppresses Triple-Negative Breast Tumor Growth by Reducing Immune-Suppressive Cells. International Journal of Molecular Sciences, 2021, 22, 5150.	4.1	19
9	Abstract LB184: Induction of ulk1 regulated autophagy by a novel antipsychotic drug leads to apoptosis in pancreatic cancer cells. , 2021, , .		1
10	Role of Phytochemicals in Perturbation of Redox Homeostasis in Cancer. Antioxidants, 2021, 10, 83.	5.1	31
11	Pimavanserin: A Novel Autophagy Modulator for Pancreatic Cancer Treatment. Cancers, 2021, 13, 5661.	3.7	6
12	Cancer cells stemness: A doorstep to targeted therapy. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2020, 1866, 165424.	3.8	96
13	Therapeutic Targeting of Vasculature in the Premetastatic and Metastatic Niches Reduces Lung Metastasis. Journal of Immunology, 2020, 204, 990-1000.	0.8	30
14	Pimozide Suppresses the Growth of Brain Tumors by Targeting STAT3-Mediated Autophagy. Cells, 2020, 9, 2141.	4.1	22
15	Repurposing Pimavanserin, an Anti-Parkinson Drug for Pancreatic Cancer Therapy. Molecular Therapy - Oncolytics, 2020, 19, 19-32.	4.4	10
16	Low Dose of Penfluridol Inhibits VEGF-Induced Angiogenesis. International Journal of Molecular Sciences, 2020, 21, 755.	4.1	9
17	Oxidative Stress and Cancer: Chemopreventive and Therapeutic Role of Triphala. Antioxidants, 2020, 9, 72.	5.1	51
18	Targeting Glioblastoma Tumor Microenvironment. Advances in Experimental Medicine and Biology, 2020, 1296, 1-9.	1.6	9

#	Article	IF	CITATIONS
19	Atovaquone: An Antiprotozoal Drug Suppresses Primary and Resistant Breast Tumor Growth by Inhibiting HER2/ \hat{l}^2 -Catenin Signaling. Molecular Cancer Therapeutics, 2019, 18, 1708-1720.	4.1	24
20	Role of Phytochemicals in Cancer Prevention. International Journal of Molecular Sciences, 2019, 20, 4981.	4.1	202
21	CRISPR-Cas9: A multifaceted therapeutic strategy for cancer treatment. Seminars in Cell and Developmental Biology, 2019, 96, 4-12.	5.0	15
22	Penfluridol overcomes paclitaxel resistance in metastatic breast cancer. Scientific Reports, 2019, 9, 5066.	3.3	36
23	HER2-mediated GLI2 stabilization promotes anoikis resistance and metastasis of breast cancer cells. Cancer Letters, 2019, 442, 68-81.	7.2	28
24	Role of Endothelial RhoA in Melanoma and Lung Cancer Transâ€endothelial Migration and Metastasis. FASEB Journal, 2019, 33, 368.9.	0.5	0
25	Pimavanserin tartrate: A potential drug for pancreatic cancer therapy in future. FASEB Journal, 2019, 33, 647.35.	0.5	0
26	Endothelial RhoA Regulates Breast Cancer Metastasis. FASEB Journal, 2019, 33, 647.40.	0.5	0
27	Zinc finger protein 746 promotes colorectal cancer progression via c-Myc stability mediated by glycogen synthase kinase $3\hat{l}^2$ and F-box and WD repeat domain-containing 7. Oncogene, 2018, 37, 3715-3728.	5.9	33
28	Regulation of SIRT1/AMPK axis is critically involved in gallotannin-induced senescence and impaired autophagy leading to cell death in hepatocellular carcinoma cells. Archives of Toxicology, 2018, 92, 241-257.	4.2	24
29	Role of Forkhead Box Class O proteins in cancer progression and metastasis. Seminars in Cancer Biology, 2018, 50, 142-151.	9.6	82
30	AKR1C3 Inhibitor KV-37 Exhibits Antineoplastic Effects and Potentiates Enzalutamide in Combination Therapy in Prostate Adenocarcinoma Cells. Molecular Cancer Therapeutics, 2018, 17, 1833-1845.	4.1	36
31	Penfluridol induces endoplasmic reticulum stress leading to autophagy in pancreatic cancer. Tumor Biology, 2017, 39, 101042831770551.	1.8	27
32	Penfluridol suppresses glioblastoma tumor growth by Akt-mediated inhibition of GLI1. Oncotarget, 2017, 8, 32960-32976.	1.8	41
33	Immune consequences of penfluridol treatment associated with inhibition of glioblastoma tumor growth. Oncotarget, 2017, 8, 47632-47641.	1.8	27
34	Penfluridol suppresses pancreatic tumor growth by autophagy-mediated apoptosis. Scientific Reports, 2016, 6, 26165.	3.3	54
35	Nanoemulsion formulations for anti-cancer agent piplartineâ€"Characterization, toxicological, pharmacokinetics and efficacy studies. International Journal of Pharmaceutics, 2016, 498, 12-22.	5 . 2	79
36	Penfluridol: An Antipsychotic Agent Suppresses Metastatic Tumor Growth in Triple-Negative Breast Cancer by Inhibiting Integrin Signaling Axis. Cancer Research, 2016, 76, 877-890.	0.9	75

#	Article	IF	CITATIONS
37	Caspase-9 as a therapeutic target for treating cancer. Expert Opinion on Therapeutic Targets, 2015, 19, 113-127.	3.4	115
38	STAT3 induces anoikis resistance, promotes cell invasion and metastatic potential in pancreatic cancer cells. Carcinogenesis, 2015, 36, 142-150.	2.8	112
39	Mechanisms of the Anticancer Effects of Isothiocyanates. The Enzymes, 2015, 37, 111-137.	1.7	34
40	A derivative of epigallocatechinâ€3â€gallate induces apoptosis via <scp>SHP</scp> â€1â€mediated suppression of <scp>BCRâ€ABL</scp> and <scp>STAT3</scp> signalling in chronic myelogenous leukaemia. British Journal of Pharmacology, 2015, 172, 3565-3578.	5 . 4	27
41	Modulation of signal transduction pathways by natural compounds in cancer. Chinese Journal of Natural Medicines, 2015, 13, 730-742.	1.3	35
42	PEITC treatment suppresses myeloid derived tumor suppressor cells to inhibit breast tumor growth. Oncolmmunology, 2015, 4, e981449.	4.6	18
43	Inhibition of \hat{l}^2 -Catenin signaling suppresses pancreatic tumor growth by disrupting nuclear \hat{l}^2 -Catenin/TCF-1 complex: Critical role of STAT-3. Oncotarget, 2015, 6, 11561-11574.	1.8	70
44	Overexpression of Mcl-1 confers resistance to BRAFV600E inhibitors alone and in combination with MEK1/2 inhibitors in melanoma. Oncotarget, 2015, 6, 40535-40556.	1.8	59
45	TGFα-PE38 enhances cytotoxic T-lymphocyte killing of breast cancer cells. Oncology Letters, 2014, 7, 2113-2117.	1.8	5
46	CBP-Mediated FOXO-1 Acetylation Inhibits Pancreatic Tumor Growth by Targeting SirT. Molecular Cancer Therapeutics, 2014, 13, 687-698.	4.1	59
47	Molecular targets of isothiocyanates in cancer: Recent advances. Molecular Nutrition and Food Research, 2014, 58, 1685-1707.	3.3	157
48	HER2 mediated <i>de novo</i> production of TGFβ leads to SNAIL driven epithelialâ€toâ€mesenchymal transition and metastasis of breast cancer. Molecular Oncology, 2014, 8, 1532-1547.	4.6	58
49	Phenethyl isothiocyanate: A comprehensive review of anti-cancer mechanisms. Biochimica Et Biophysica Acta: Reviews on Cancer, 2014, 1846, 405-424.	7.4	117
50	Syntheses, neural protective activities, and inhibition of glycogen synthase kinase-3Î ² of substituted quinolines. Bioorganic and Medicinal Chemistry Letters, 2014, 24, 3392-3397.	2.2	11
51	Piperine Causes G1 Phase Cell Cycle Arrest and Apoptosis in Melanoma Cells through Checkpoint Kinase-1 Activation. PLoS ONE, 2014, 9, e94298.	2.5	80
52	Inhibition of HER2-integrin signaling by Cucurbitacin B leads to <i>in vitro</i> and <i>in vivo</i> breast tumor growth suppression. Oncotarget, 2014, 5, 1812-1828.	1.8	60
53	Critical role of STAT3 in melanoma metastasis through anoikis resistance. Oncotarget, 2014, 5, 7051-7064.	1.8	55
54	Pancreatic cancer chemoprevention by phytochemicals. Cancer Letters, 2013, 334, 86-94.	7.2	46

#	Article	IF	CITATIONS
55	Metastasis of Breast Tumor Cells to Brain Is Suppressed by Phenethyl Isothiocyanate in a Novel In Vivo Metastasis Model. PLoS ONE, 2013, 8, e67278.	2.5	64
56	Diindolylmethane-mediated Gli1 Protein Suppression Induces Anoikis in Ovarian Cancer Cells in Vitro and Blocks Tumor Formation Ability in Vivo*. Journal of Biological Chemistry, 2012, 287, 28745-28754.	3.4	37
57	Antitumor activity of phenethyl isothiocyanate in HER2-positive breast cancer models. BMC Medicine, 2012, 10, 80.	5.5	78
58	Inhibition of EGFR-AKT Axis Results in the Suppression of Ovarian Tumors In Vitro and in Preclinical Mouse Model. PLoS ONE, 2012, 7, e43577.	2.5	39
59	Regulation of macroautophagy in ovarian cancer cells in vitro and in vivo by controlling Glucose regulatory protein 78 and AMPK. Oncotarget, 2012, 3, 435-449.	1.8	61
60	Role of Mitochondrial Electron Transport Chain Complexes in Capsaicin Mediated Oxidative Stress Leading to Apoptosis in Pancreatic Cancer Cells. PLoS ONE, 2011, 6, e20151.	2.5	182
61	The role of K-Ras gene mutation in TRAIL-induced apoptosis in pancreatic and lung cancer cell lines. Cancer Chemotherapy and Pharmacology, 2011, 67, 481-487.	2.3	22
62	Pancreatic Tumor Suppression by Benzyl Isothiocyanate Is Associated with Inhibition of PI3K/AKT/FOXO Pathway. Clinical Cancer Research, 2011, 17, 1784-1795.	7.0	157
63	Benzyl Isothiocyanate Suppresses Pancreatic Tumor Angiogenesis and Invasion by Inhibiting HIF-α/VEGF/Rho-GTPases: Pivotal Role of STAT-3. PLoS ONE, 2011, 6, e25799.	2.5	92
64	Benzyl Isothiocyanate–Mediated Inhibition of Histone Deacetylase Leads to NF-κB Turnoff in Human Pancreatic Carcinoma Cells. Molecular Cancer Therapeutics, 2010, 9, 1596-1608.	4.1	84
65	Activation of Checkpoint Kinase 2 by 3,3′-Diindolylmethane Is Required for Causing G ₂ /M Cell Cycle Arrest in Human Ovarian Cancer Cells. Molecular Pharmacology, 2010, 78, 297-309.	2.3	42
66	BITC Sensitizes Pancreatic Adenocarcinomas to TRAIL-induced Apoptosis. Cancer Growth and Metastasis, 2010, 2009, 45-55.	3.5	24
67	BITC Sensitizes Pancreatic Adenocarcinomas to TRAIL-induced Apoptosis. Cancer Growth and Metastasis, 2009, 2, CGM.S3982.	3.5	11
68	Benzyl isothiocyanate-mediated generation of reactive oxygen species causes cell cycle arrest and induces apoptosis via activation of MAPK in human pancreatic cancer cells. Carcinogenesis, 2009, 30, 1744-1753.	2.8	119
69	The Role of STAT-3 in the Induction of Apoptosis in Pancreatic Cancer Cells by Benzyl Isothiocyanate. Journal of the National Cancer Institute, 2009, 101, 176-193.	6.3	143
70	In vitro and in vivo induction of apoptosis by capsaicin in pancreatic cancer cells is mediated through ROS generation and mitochondrial death pathway. Apoptosis: an International Journal on Programmed Cell Death, 2008, 13, 1465-1478.	4.9	268
71	Cell Division Cycle 25B Phosphatase Is Essential for Benzo(<i>>a</i>)Pyrene-7,8-Diol-9,10-Epoxideâ€"Induced Neoplastic Transformation. Cancer Research, 2007, 67, 9150-9157.	0.9	7
72	Sulforaphane-induced Cell Death in Human Prostate Cancer Cells Is Initiated by Reactive Oxygen Species. Journal of Biological Chemistry, 2005, 280, 19911-19924.	3.4	321

#	Article	IF	CITATIONS
73	Cell cycle arrest, apoptosis induction and inhibition of nuclear factor kappa B activation in anti-proliferative activity of benzyl isothiocyanate against human pancreatic cancer cells. Carcinogenesis, 2004, 25, 1701-1709.	2.8	161
74	Allyl isothiocyanate, a' constituent of cruciferous vegetables, inhibits growth of PC-3 human prostate cancer xenografts in vivo. Carcinogenesis, 2003, 24, 1665-1670.	2.8	110
75	Role of glutathione conjugate efflux in cellular protection against benzo[a]pyrene-7,8-diol-9,10-epoxide-induced DNA damage. Molecular Carcinogenesis, 2002, 33, 156-162.	2.7	35
76	Role of glutathione conjugate efflux in cellular protection against benzo[a]pyrene-7,8-diol-9,10-epoxide-induced DNA damage. Molecular Carcinogenesis, 2002, 33, 156-62.	2.7	10
77	Location of the epoxide function determines specificity of the allelic variants of human glutathione transferase Pi toward benzo[c]chrysene diol epoxide isomers. FEBS Letters, 2000, 486, 163-166.	2.8	8