
Ali Allahverdi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6696883/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Hydrogels as intelligent materials: A brief review of synthesis, properties and applications. Materials Today Chemistry, 2018, 8, 42-55.	1.7	356
2	Efflorescence control in geopolymer binders based on natural pozzolan. Cement and Concrete Composites, 2012, 34, 25-33.	4.6	334
3	Hazardous aluminum dross characterization and recycling strategies: A critical review. Journal of Environmental Management, 2018, 223, 452-468.	3.8	182
4	High strength geopolymer binder based on waste-glass powder. Advanced Powder Technology, 2017, 28, 215-222.	2.0	152
5	Effective dispersion of nano-TiO2 powder for enhancement of photocatalytic properties in cement mixes. Construction and Building Materials, 2013, 41, 224-230.	3.2	120
6	The effect of nanosilica on mechanical, thermal and morphological properties of epoxy coating. Progress in Organic Coatings, 2012, 75, 543-548.	1.9	113
7	Effects of curing time and temperature on strength development of inorganic polymeric binder based on natural pozzolan. Journal of Materials Science, 2009, 44, 3088-3097.	1.7	104
8	A promising green process for synthesis of high purity activated-alumina nanopowder from secondary aluminum dross. Journal of Cleaner Production, 2018, 179, 93-102.	4.6	94
9	Influence of calcium aluminate cement on geopolymerization of natural pozzolan. Construction and Building Materials, 2016, 114, 290-296.	3.2	87
10	Acid attack on geopolymer cement mortar based on waste-glass powder and calcium aluminate cement at mild concentration. Construction and Building Materials, 2018, 193, 363-372.	3.2	77
11	Enhanced alumina recovery from secondary aluminum dross for high purity nanostructured Î ³ -alumina powder production: Kinetic study. Journal of Environmental Management, 2018, 212, 278-291.	3.8	75
12	Mechanical activation of chemically activated high phosphorous slag content cement. Powder Technology, 2013, 245, 182-188.	2.1	69
13	Influence of curing conditions on the mechanical and physical properties of chemically-activated phosphorous slag cement. Powder Technology, 2016, 288, 132-139.	2.1	55
14	Ultrasound-assisted synthesis of colloidal nanosilica from silica fume: Effect of sonication time on the properties of product. Advanced Powder Technology, 2014, 25, 1571-1577.	2.0	54
15	Resistance of chemically-activated high phosphorous slag content cement against freeze–thaw cycles. Cold Regions Science and Technology, 2014, 103, 107-114.	1.6	48
16	Self-compacting concrete containing different powders at elevated temperatures – Mechanical properties and changes in the phase composition of the paste. Thermochimica Acta, 2011, 514, 74-81.	1.2	47
17	Chemical activation of slag-blended Portland cement. Journal of Building Engineering, 2018, 18, 76-83.	1.6	46
18	Mechanical activation of silicomanganese slag and its influence on the properties of Portland slag cement. Powder Technology, 2014, 251, 41-51.	2.1	45

ALI ALLAHVERDI

#	Article	IF	CITATIONS
19	Durability of Geopolymer Mortar Based on Waste-Glass Powder and Calcium Aluminate Cement in Acid Solutions. Journal of Materials in Civil Engineering, 2017, 29, .	1.3	44
20	Calorimetric study of geopolymer binders based on natural pozzolan. Journal of Thermal Analysis and Calorimetry, 2017, 127, 2181-2190.	2.0	37
21	Accelerated biodegradation of cured cement paste by Thiobacillus species under simulation condition. International Biodeterioration and Biodegradation, 2014, 86, 317-326.	1.9	36
22	<scp>CoAl₂O₄</scp> Nano Pigment Obtained by Combustion Synthesis. International Journal of Applied Ceramic Technology, 2012, 9, 968-978.	1.1	33
23	Efflorescence Formation and Control in Alkali-Activated Phosphorus Slag Cement. International Journal of Civil Engineering, 2016, 14, 425-438.	0.9	33
24	Development of multi-strength grade green lightweight reactive powder concrete using expanded polystyrene beads. Construction and Building Materials, 2018, 172, 457-467.	3.2	32
25	Carbonation Versus Efflorescence in Alkali-Activated Blast-Furnace Slag in Relation with Chemical Composition of Activator. International Journal of Civil Engineering, 2017, 15, 565-573.	0.9	29
26	Strength development and acid resistance of geopolymer based on waste clay brick powder and phosphorous slag. Structural Concrete, 2019, 20, 1596-1606.	1.5	27
27	Green template-free synthesis and characterization of mesoporous alumina as a high value-added product in aluminum black dross recycling strategy. Journal of Alloys and Compounds, 2019, 792, 161-169.	2.8	27
28	Resistance of red clay brick waste/phosphorus slag-based geopolymer mortar to acid solutions of mild concentration. Journal of Building Engineering, 2021, 34, 102066.	1.6	27
29	Use of construction and demolition waste (CDW) for alkali-activated or geopolymer cements. , 2013, , 439-475.		26
30	Durability performance of geopolymer cement based on fly ash and calcium aluminate cement in mild concentration acid solutions. Journal of Sustainable Cement-Based Materials, 2019, 8, 290-308.	1.7	26
31	Characterizing thermal behavior of ceramic glaze containing nano-sized cobalt-aluminate pigment by hot stage microscopy. Thermochimica Acta, 2011, 521, 191-196.	1.2	24
32	Alkali-Activated Phosphorous Slag Performance under Different Curing Conditions: Compressive Strength, Hydration Products, and Microstructure. Journal of Materials in Civil Engineering, 2018, 30,	1.3	24
33	Methods to control efflorescence in alkali-activated cement-based materials. , 2015, , 463-483.		22
34	Photocatalytic effect of nano-TiO2 loaded cement on dye decolorization and Escherichia coli inactivation under UV irradiation. Research on Chemical Intermediates, 2016, 42, 5395-5412.	1.3	17
35	Developing Low-Cost Activators for Alkali-Activated Phosphorus Slag-Based Binders. Journal of Materials in Civil Engineering, 2017, 29, .	1.3	16
36	Performance evaluation of foaming agents in cellular concrete based on foamed alkali-activated slag. Canadian Journal of Civil Engineering, 2017, 44, 893-898.	0.7	16

ALI ALLAHVERDI

#	Article	IF	CITATIONS
37	Production of nanostructured Î ³ -alumina from aluminum foundry tailing for catalytic applications. International Nano Letters, 2018, 8, 255-261 Pilot-scale valorization of hazardous aluminum dross into <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline" id="d1e1692"</mml:math 	2.3	16
38	altimg="si14.svg"> <mml:mi mathvariant="bold-italic">1³</mml:mi> -Al <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline" id="d1e1697" altimg="si15.svg"><mml:msub><mml:mrow /><mml:mrow></mml:mrow></mml:mrow </mml:msub>O<mml:math< td=""><td>3.0</td><td>14</td></mml:math<></mml:math 	3.0	14
39	Resistance of chemically activated high phosphorous slag content cement against frost-salt attack. Cold Regions Science and Technology, 2014, 98, 18-25.	1.6	13
40	Sulfate resistance of RFCC spent catalyst-blended Portland cement. Boletin De La Sociedad Espanola De Ceramica Y Vidrio, 2019, 58, 103-114.	0.9	13
41	Superior Sodium Sulfate Resistance of a Chemically Activated Phosphorus Slag–Based Composite Cement. Journal of Materials in Civil Engineering, 2017, 29, .	1.3	12
42	Acid-Resistant Geopolymer Based on Fly Ash–Calcium Aluminate Cement. Journal of Materials in Civil Engineering, 2018, 30, 04018143.	1.3	11
43	Effect of organoclay reinforced acrylate latex particles on the cement paste performance. Journal of Dispersion Science and Technology, 2021, 42, 416-431.	1.3	11
44	Effect of preparation parameters on properties of metakaolin-based geopolymer activated by silica fume- sodium hydroxide alkaline blend. Journal of Building Engineering, 2022, 60, 104984.	1.6	11
45	Quality control and assessment of geopolymer cements based on reacted and free alkalis. Construction and Building Materials, 2017, 153, 274-283.	3.2	10
46	A Temperature–Age Model For Prediction of Compressive Strength of Chemically Activated High Phosphorus Slag Content Cement. International Journal of Civil Engineering, 2017, 15, 839-847.	0.9	7
47	Methylene blue adsorption by TiO2-based nano-adsorbents: performance evaluation and kinetic study. Research on Chemical Intermediates, 2019, 45, 4863-4883.	1.3	7
48	Using PC clinker as aggregate-enhancing concrete properties by improving ITZ microstructure. Magazine of Concrete Research, 2020, 72, 173-181.	0.9	7
49	Non-supercritical drying synthesis and characterization of monolithic alumina aerogel from secondary aluminum dross. Ceramics International, 2022, 48, 13154-13162.	2.3	7
50	Enhancing Concrete Properties by Using Silica Fume as Reactive Powder and Portland Cement-Clinker as Reactive Aggregate. Journal of Materials in Civil Engineering, 2019, 31, .	1.3	6
51	Highly efficient green synthesis of highly pure microporous nanosilica from silicomanganese slag. Ceramics International, 2021, 47, 2222-2229.	2.3	6
52	Exergetic and environmental performance improvement in cement production process by driving force distribution. Korean Journal of Chemical Engineering, 2012, 29, 606-613.	1.2	5
53	Enhancement of hydraulic activity of slag-blended Portland cement. Asian Journal of Civil Engineering, 2018, 19, 1009-1020.	0.8	5
54	A Scoping Review on Integrating Inorganic Nanomaterials into Cement Composites. Advances in Civil Engineering Materials, 2019, 8, 526-553.	0.2	4

Ali Allahverdi

#	Article	IF	CITATIONS
55	Liquid cell transmission electron microscopy reveals C-S-H growth mechanism during Portland cement hydration. Materialia, 2022, 22, 101387.	1.3	4
56	Preparation of monolithic amorphous silica aerogel through promising valorization of silicomanganese slag. Journal of Non-Crystalline Solids, 2022, 586, 121561.	1.5	4
57	Effect of pH, Molar Ratio of Fuel to Nitrates and Calcination Temperature on the Clycine-Nitrate Synthesis of Nano CoAl ₂ O ₄ . Advances in Science and Technology, 2010, 68, 176-181.	0.2	3
58	A composite cement of high magnesium sulphate resistance. Materiales De Construccion, 2018, 68, 154.	0.2	3
59	Application of Liquid Cell-TEM in Hydration Reactions of Nano Portland Cement. Microscopy and Microanalysis, 2018, 24, 294-295.	0.2	2
60	Production of High Purity \hat{I}_{\pm} - and \hat{I}^3 -Alumina From Aluminum Dross. , 2020, , 473-482.		2
61	Recycling Aluminosilicate Industrial Wastes Into Geopolymer: A Review. , 2020, , 490-507.		2
62	Properties of Green, Lightweight, and High-Strength Reactive Powder Concrete Incorporating Modified Expanded Polystyrene Beads. Journal of Materials in Civil Engineering, 2021, 33, .	1.3	2
63	Investigating photocatalytic property of TiO 2 nanorods fabricated hydrothermally at equal molar ratio of KOH and Na OH. International Journal of Applied Ceramic Technology, 2019, 16, 682-692.	1.1	1
64	Chemical doping of TiO2 Nano-tube array for enhancing hydrogen production through photoelectrochemical water splitting. SN Applied Sciences, 2020, 2, 1.	1.5	1
65	Calorimetric study of geopolymer binders based on natural pozzolan. , 2017, 127, 2181.		1
66	STOCHASTIC MODELING OF COMPRESSIVE STRENGTH OF PHOSPHORUS SLAG CONTENT CEMENT. Ceramics - Silikaty, 2016, , 169-178.	0.2	1
67	Advanced characterisation of 3D structure and porosity of ordinary portland cement (OPC) mortar using plasma focused ion beam tomography and Xâ€ray computed tomography. Journal of Microscopy, 2022, 287, 19-31.	0.8	1
68	Using Plasma Focused Ion Beam Microscopy to Characterize 3D Structure and Porosity of OPC Mortar. Microscopy and Microanalysis, 2019, 25, 926-927.	0.2	0