Elizabeth C Martin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6696834/publications.pdf

Version: 2024-02-01

759233 713466 27 476 12 21 citations h-index g-index papers 27 27 27 822 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Adipose-Derived Stromal/Stem Cell Response to Tumors and Wounds: Evaluation of Patient Age. Stem Cells and Development, 2022, 31, 579-592.	2.1	4
2	Breast Cancer-Stromal Interactions: Adipose-Derived Stromal/Stem Cell Age and Cancer Subtype Mediated Remodeling. Stem Cells and Development, 2022, 31, 604-620.	2.1	3
3	Quantifying Breast Cancer-Driven Fiber Alignment and Collagen Deposition in Primary Human Breast Tissue. Frontiers in Bioengineering and Biotechnology, 2021, 9, 618448.	4.1	7
4	Application of a small molecule inhibitor screen approach to identify CXCR4 downstream signaling pathways that promote a mesenchymal and fulvestrantâ€'resistant phenotype in breast cancer cells. Oncology Letters, 2021, 21, 380.	1.8	1
5	microRNA Sequencing of CD34+ Sorted Adipose Stem Cells Undergoing Endotheliogenesis. Stem Cells and Development, 2021, 30, 265-288.	2.1	4
6	Breast Cancer Reconstruction: Design Criteria for a Humanized Microphysiological System. Tissue Engineering - Part A, 2021, 27, 479-488.	3.1	2
7	Evaluation of Extracellular Matrix Composition to Improve Breast Cancer Modeling. Tissue Engineering - Part A, 2021, 27, 500-511.	3.1	11
8	Modeling Breast Cancer in Human Breast Tissue using a Microphysiological System. Journal of Visualized Experiments, 2021, , .	0.3	2
9	A Role for Adipocytes and Adipose Stem Cells in the Breast Tumor Microenvironment and Regenerative Medicine. Frontiers in Physiology, 2021, 12, 751239.	2.8	15
10	Evaluation of deacetylase inhibition in metaplastic breast carcinoma using multiple derivations of preclinical models of a new patient-derived tumor. PLoS ONE, 2020, 15, e0226464.	2.5	13
11	ERK5 Is Required for Tumor Growth and Maintenance Through Regulation of the Extracellular Matrix in Triple Negative Breast Cancer. Frontiers in Oncology, 2020, 10, 1164.	2.8	13
12	Proteomic characterization of a trauma-based rat model of heterotopic ossification identifies interactive signaling networks as potential therapeutic targets. Journal of Proteomics, 2020, 226, 103907.	2.4	1
13	Patient-Derived Xenografts as an Innovative Surrogate Tumor Model for the Investigation of Health Disparities in Triple Negative Breast Cancer. Women S Health Reports, 2020, 1, 383-392.	0.8	4
14	Lignin-graft-PLGA drug-delivery system improves efficacy of MEK1/2 inhibitors in triple-negative breast cancer cell line. Nanomedicine, 2020, 15, 981-1000.	3.3	19
15	Acellular Biologic Nipple–Areolar Complex Graft: <i>In Vivo</i> Murine and Nonhuman Primate Host Response Evaluation. Tissue Engineering - Part A, 2020, 26, 872-885.	3.1	5
16	Transcriptomic Profiling of Adipose Derived Stem Cells Undergoing Osteogenesis by RNA-Seq. Scientific Reports, 2019, 9, 11800.	3.3	31
17	Drug resistance profiling of a new triple negative breast cancer patient-derived xenograft model. BMC Cancer, 2019, 19, 205.	2.6	19
18	Comparative proteomic analyses of human adipose extracellular matrices decellularized using alternative procedures. Journal of Biomedical Materials Research - Part A, 2018, 106, 2481-2493.	4.0	37

#	Article	IF	CITATIONS
19	A novel patient-derived xenograft model for claudin-low triple-negative breast cancer. Breast Cancer Research and Treatment, 2018, 169, 381-390.	2.5	19
20	Trauma induced heterotopic ossification patient serum alters mitogen activated protein kinase signaling in adipose stem cells. Journal of Cellular Physiology, 2018, 233, 7035-7044.	4.1	12
21	Engineering Breast Cancer Microenvironments and 3D Bioprinting. Frontiers in Bioengineering and Biotechnology, 2018, 6, 66.	4.1	77
22	Panobinostat suppresses the mesenchymal phenotype in a novel claudin-low triple negative patient-derived breast cancer model. Oncoscience, 2018, 5, 99-108.	2.2	15
23	MicroRNAâ€335â€5p and â€3p synergize to inhibit estrogen receptor alpha expression and promote tamoxifen resistance. FEBS Letters, 2017, 591, 382-392.	2.8	52
24	Endocrine disruptors and the tumor microenvironment: A new paradigm in breast cancer biology. Molecular and Cellular Endocrinology, 2017, 457, 13-19.	3.2	35
25	Argonaute 2 Expression Correlates with a Luminal B Breast Cancer Subtype and Induces Estrogen Receptor Alpha Isoform Variation. Non-coding RNA, 2016, 2, 8.	2.6	11
26	Inhibition of p38 mitogen-activated protein kinase alters microRNA expression and reverses epithelial-to-mesenchymal transition. International Journal of Oncology, 2013, 42, 1139-1150.	3.3	32
27	Altered Death Receptor Signaling Promotes Epithelial-to-Mesenchymal Transition and Acquired Chemoresistance. Scientific Reports, 2012, 2, 539.	3.3	32