Alessio Valletta

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6696521/publications.pdf Version: 2024-02-01

		394286	434063
32	948	19	31
papers	citations	h-index	g-index
32	32	32	1380
all docs	docs citations	times ranked	citing authors

ALESSIO VALLETTA

#	Article	IF	CITATIONS
1	Impact of Environmental Factors on Stilbene Biosynthesis. Plants, 2021, 10, 90.	1.6	82
2	Stemodane Diterpenes and Diterpenoids: Isolation, Structure Elucidation, Biogenesis, Biosynthesis, Biological Activity, Biotransformations, Metabolites and Derivatives Biological Activity, Rearrangements. Molecules, 2021, 26, 2761.	1.7	2
3	Phytochemical and biological characterization of Italian "sedano bianco di Sperlonga―Protected Geographical Indication celery ecotype: A multimethodological approach. Food Chemistry, 2020, 309, 125649.	4.2	25
4	<i>In vitro</i> antimicrobial activity of plant extracts against <i>Pseudomonas syringae</i> pv. <i>actinidiae</i> causal agent of bacterial canker in kiwifruit. Plant Biosystems, 2020, 154, 100-106.	0.8	10
5	Antifungal activity of dimethyl sulfoxide against Botrytis cinerea and phytotoxicity on tomato and lettuce plants. Plant Biosystems, 2020, 154, 455-462.	0.8	4
6	Remediation of hexavalent chromium contaminated water through zero-valent iron nanoparticles and effects on tomato plant growth performance. Scientific Reports, 2020, 10, 1920.	1.6	104
7	Stilbene biosynthesis and gene expression in response to methyl jasmonate and continuous light treatment in <i>Vitis vinifera</i> cv. Malvasia del Lazio and <i>Vitis rupestris</i> Du Lot cell cultures. Physiologia Plantarum, 2019, 166, 646-662.	2.6	20
8	Stemarane Diterpenes and Diterpenoids. International Journal of Molecular Sciences, 2019, 20, 2627.	1.8	9
9	Anti-Candida Biofilm Activity of Pterostilbene or Crude Extract from Non-Fermented Grape Pomace Entrapped in Biopolymeric Nanoparticles. Molecules, 2019, 24, 2070.	1.7	26
10	Microfluidic synthesis of methyl jasmonate-loaded PLGA nanocarriers as a new strategy to improve natural defenses in Vitis vinifera. Scientific Reports, 2019, 9, 18322.	1.6	21
11	Effects of ionizing radiation on bio-active plant extracts useful for preventing oxidative damages. Natural Product Research, 2019, 33, 1106-1114.	1.0	17
12	Plant Products with Antifungal Activity: From Field to Biotechnology Strategies. , 2018, , 35-71.		0
13	Chitosan oligosaccharides affect xanthone and VOC biosynthesis in Hypericum perforatum root cultures and enhance the antifungal activity of root extracts. Plant Cell Reports, 2018, 37, 1471-1484.	2.8	20
14	Prenylated flavonoids and total extracts from Morus nigra L. root bark inhibit in vitro growth of plant pathogenic fungi. Plant Biosystems, 2017, 151, 783-787.	0.8	6
15	Microfluidic-assisted nanoprecipitation of antiviral-loaded polymeric nanoparticles. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2017, 532, 369-376.	2.3	42
16	Endocytic pathways involved in PLGA nanoparticle uptake by grapevine cells and role of cell wall and membrane in size selection. Plant Cell Reports, 2017, 36, 1917-1928.	2.8	84
17	Antiâ€Dermatophyte and Antiâ€ <i>Malassezia</i> Activity of Extracts Rich in Polymeric Flavanâ€3â€ols Obtained from <i>Vitis vinifera</i> Seeds. Phytotherapy Research, 2017, 31, 124-131.	2.8	20
18	Metabolic Profile and Root Development of Hypericum perforatum L. In vitro Roots under Stress Conditions Due to Chitosan Treatment and Culture Time. Frontiers in Plant Science, 2016, 7, 507.	1.7	17

ALESSIO VALLETTA

#	Article	IF	CITATIONS
19	Salt glands of <i>Armeria canescens</i> (Host) Boiss.: Morphological and functional aspects. Plant Biosystems, 2016, 150, 1134-1139.	0.8	5
20	Acetic acid acts as an elicitor exerting a chitosan-like effect on xanthone biosynthesis in Hypericum perforatum L. root cultures. Plant Cell Reports, 2016, 35, 1009-1020.	2.8	28
21	Ecophysiological and phytochemical response to ozone of wine grape cultivars of <i>Vitis vinifera</i> L Natural Product Research, 2016, 30, 2514-2522.	1.0	19
22	<i>In vitro</i> antifungal activity of extracts obtained from <i>Hypericum perforatum</i> adventitious roots cultured in a mist bioreactor against planktonic cells and biofilm of <i>Malassezia furfur</i> . Natural Product Research, 2016, 30, 544-550.	1.0	39
23	Reproduction of <i>Sphaerococcus coronopifolius</i> (Gigartinales, Rhodophyta) in Natural Populations of the Lazio Coasts (Central Italy) and in Culture. Cryptogamie, Algologie, 2016, 37, 265-272.	0.3	1
24	Xanthones from roots, hairy roots and cell suspension cultures of selected Hypericum species and their antifungal activity against Candida albicans. Plant Cell Reports, 2015, 34, 1953-1962.	2.8	39
25	Poly(lactic-co-glycolic) acid nanoparticles uptake by Vitis vinifera and grapevine-pathogenic fungi. Journal of Nanoparticle Research, 2014, 16, 1.	0.8	41
26	A non-targeted metabolomics approach to evaluate the effects of biomass growth and chitosan elicitation on primary and secondary metabolism of Hypericum perforatum in vitro roots. Metabolomics, 2014, 10, 1186-1196.	1.4	28
27	Enhancement of Viniferin Production in Vitis vinifera L. cv. Alphonse Lavallée Cell Suspensions by Low-Energy Ultrasound Alone and in Combination with Methyl Jasmonate. Journal of Agricultural and Food Chemistry, 2012, 60, 11135-11142.	2.4	36
28	Effects of Elicitors on the Production of Resveratrol and Viniferins in Cell Cultures of <i>Vitis vinifera</i> L. cv Italia. Journal of Agricultural and Food Chemistry, 2011, 59, 9094-9101.	2.4	68
29	Root cultures of Hypericum perforatum subsp. angustifolium elicited with chitosan and production of xanthone-rich extracts with antifungal activity. Applied Microbiology and Biotechnology, 2011, 91, 977-987.	1.7	50
30	Cell-specific expression of tryptophan decarboxylase and 10-hydroxygeraniol oxidoreductase, key genes involved in camptothecin biosynthesis in Camptotheca acuminata Decne (Nyssaceae). BMC Plant Biology, 2010, 10, 69.	1.6	32
31	Anthocyanins and xanthones in the calli and regenerated shoots of Hypericum perforatum var. angustifolium (sin. Fröhlich) Borkh. Plant Physiology and Biochemistry, 2008, 46, 414-420. –	2.8	31
32	Laticifers in Camptotheca acuminata Decne: distribution and structure. Protoplasma, 2005, 226, 155-161.	1.0	22