Ravil R Agishev

List of Publications by Year in descending order

Source: https:|/exaly.com/author-pdf/6695727/publications.pdf
Version: 2024-02-01


```
Lidar with SiPM: Some capabilities and limitations in real environment. Optics and Laser Technology,
2013, 49, 86-90.
4.6
3.8

34
Simple approach to predict APD/PMT lidar detector performance under sky background
dimensionless parametrization. Optics and Lasers in Engineering, 2006, 44, 779-796.
2

Range-resolved pulsed and CWFM lidars: potential capabilities comparison. Applied Physics B: Lasers
2.2
\(3 \quad\) and Optics, 2006, 85, 149-162.

4 Spatial filtering efficiency of monostatic biaxial lidar: analysis and applications. Applied Optics, 2002,
\(41,7516\).
4 Spatial filtering efficiency of monostatic biaxial lidar: analysis and applications. Applied Optics, 2002,
41,7516 .
2.1

20 28

Application of the method of decomposition of lidar signal-to-noise ratio to the assessment of laser
\(2.2 \quad 16\)
\(5 \begin{aligned} & \text { Application of the method of decomposition of lidar signal-to-noise ratio to the assessment of laser } \\ & \text { instruments for gaseous pollution detection. Applied Physics B: Lasers and Optics, 2004, 79, 255-264. }\end{aligned}\)
16

Dimensionless parameterization of lidar for laser remote sensing of the atmosphere and its application to systems with SiPM and PMT detectors. Applied Optics, 2014, 53, 3164.
1.8

Intensity-modulated linear-frequency-modulated continuous-wave lidar for distributed media:
\(7 \quad\) Intensity-modulated linear-frequency-modulated continuous-
\(2.1 \quad 14\)

8 Development of a SNR parameterization scheme for general lidar assessment. Applied Physics B: Lasers and Optics, 2005, 80, 765-776.
2.2

11

9 Atmospheric CW-FM-LD-RR ladar for trace-constituent detection: a concept development. Applied
\(9 \quad\) Physics B: Lasers and Optics, 2005, 81, 695-703.
Modeling of microjoule and millijoule energy LIDARs with PMT/SiPM/APD detectors: a sensitivity
analysis. Applied Optics, 2018,57, 3679 .
Potentialities of laser systems for remote sensing of the atmosphere at a wide variability of optical
and physical characteristics: dimensionless-parametric modelling. Quantum Electronics, 2017, 47,
\(140-152\).

CW range-resolved S-lidars: capabilities and limitations in range domain. Optics and Lasers in
12 Engineering, 2020, 134, 106260.
3.8

4

> Assessment of capabilities of lidar systems in day-and night-time under different atmospheric and internal-noise conditions. EPJ Web of Conferences, 2018, 176,01018.
0.3

3

Imaging S-lidars enhancement by optimizing range-domain characteristics. Optical Engineering, 2021, 60, .
1.0

3

15 Application of imaging S-lidars: functional and diagnostic capabilities for remote air pollution detection. Optical Engineering, 2021, 60, .
1.0

3
<title>Spatial processing of sky background radiation for remote sensing of atmosphere
parameters</title>. \(1996,2784,90\).
```

<title>Atmospheric transmittance profile remote sensing by spatial processing of sky background
radiation</title>., 1996, , .

```
<title>Natural gas leaks detection by spatial-resolvable cw-laser-based remote monitoring</title>., 1996, , .
<title> Spatial-resolvable remote sensing and detection of hydrocarbons based on cw low-power lasers</title>. , 1996, , .

CW-LD-LADAR for depth-resolvable remote gas detection: mathematical description and modeling. ,

Simple signal-to-noise parameterization scheme to assess lidar performance and its applications., 0

33 Atmospheric trace constituent detection by CW-FM-LD-ladar: a concept development. , 2004, , .
0

34 Lidar performance prediction by dimensionless SNR-parametrization. , 2005, 5979, 422.

Methodology of dimensionless multiplicative decomposition for atmospheric lidar evaluation. , 2006, 6367, 195.

About the Potential of Lidars with Different Photodetectors Under Daytime Sky Radiation. EPJ Web of```

