Janis J Daly

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6695358/publications.pdf

Version: 2024-02-01

		218677	149698
62	3,284	26	56
papers	citations	h-index	g-index
(2	63	62	2501
63	63	63	3501
all docs	docs citations	times ranked	citing authors
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Brain–computer interfaces in neurological rehabilitation. Lancet Neurology, The, 2008, 7, 1032-1043.	10.2	954
2	Feasibility of a New Application of Noninvasive Brain Computer Interface (BCI): A Case Study of Training for Recovery of Volitional Motor Control After Stroke. Journal of Neurologic Physical Therapy, 2009, 33, 203-211.	1.4	235
3	Comparison of Robotics, Functional Electrical Stimulation, and Motor Learning Methods for Treatment of Persistent Upper ExtremityÂDysfunction After Stroke: AÂRandomizedÂControlled Trial. Archives of Physical Medicine and Rehabilitation, 2015, 96, 981-990.	0.9	167
4	Response to upper-limb robotics and functional neuromuscular. Journal of Rehabilitation Research and Development, 2005, 42, 723.	1.6	149
5	Construction of Efficacious Gait and Upper Limb Functional Interventions Based on Brain Plasticity Evidence and Model-Based Measures For Stroke Patients. Scientific World Journal, The, 2007, 7, 2031-2045.	2.1	126
6	A Randomized Controlled Trial of Functional Neuromuscular Stimulation in Chronic Stroke Subjects. Stroke, 2006, 37, 172-178.	2.0	118
7	Recovery of Coordinated Gait. Neurorehabilitation and Neural Repair, 2011, 25, 588-596.	2.9	109
8	Functional corticomuscular connection during reaching is weakened following stroke. Clinical Neurophysiology, 2009, 120, 994-1002.	1.5	105
9	Prefrontal over-activation during walking in people with mobility deficits: Interpretation and functional implications. Human Movement Science, 2018, 59, 46-55.	1.4	93
10	Brain-Computer Interface: Current and Emerging Rehabilitation Applications. Archives of Physical Medicine and Rehabilitation, 2015, 96, S1-S7.	0.9	89
11	Long-Dose Intensive Therapy Is Necessary for Strong, Clinically Significant, Upper Limb Functional Gains and Retained Gains in Severe/Moderate Chronic Stroke. Neurorehabilitation and Neural Repair, 2019, 33, 523-537.	2.9	86
12	Development and testing of the Gait Assessment and Intervention Tool (G.A.I.T.): A measure of coordinated gait components. Journal of Neuroscience Methods, 2009, 178, 334-339.	2.5	62
13	Examining the positive effects of exercise in intubated adults in ICU: A prospective repeated measures clinical study. Intensive and Critical Care Nursing, 2012, 28, 307-318.	2.9	62
14	Topographical measures of functional connectivity as biomarkers for post-stroke motor recovery. Journal of NeuroEngineering and Rehabilitation, 2017, 14, 67.	4.6	57
15	Prolonged cognitive planning time, elevated cognitive effort, and relationship to coordination and motor control following stroke. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2006, 14, 168-171.	4.9	53
16	Physiological Cost Index as a Proxy Measure for the Oxygen Cost of Gait in Stroke Patients. Neurorehabilitation and Neural Repair, 2007, 21, 429-434.	2.9	50
17	Weakening of Synergist Muscle Coupling During Reaching Movement in Stroke Patients. Neurorehabilitation and Neural Repair, 2011, 25, 359-368.	2.9	49
18	Association of spasticity and motor dysfunction in chronic stroke. Annals of Physical and Rehabilitation Medicine, 2019, 62, 397-402.	2.3	48

#	Article	IF	Citations
19	Therapeutic applications of BCI technologies. Brain-Computer Interfaces, 2017, 4, 37-52.	1.8	44
20	Intra-limb coordination deficit in stroke survivors and response to treatment. Gait and Posture, 2007, 25, 412-418.	1.4	40
21	Answering the Call: The Influence of Neuroimaging and Electrophysiological Evidence on Rehabilitation. Physical Therapy, 2007, 87, 684-703.	2.4	38
22	Automatic Synchronization of Functional Electrical Stimulation and Robotic Assisted Treadmill Training. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2008, 16, 310-313.	4.9	37
23	Abnormal cognitive planning and movement smoothness control for a complex shoulder/elbow motor task in stroke survivors. Journal of the Neurological Sciences, 2007, 256, 21-29.	0.6	36
24	Response of sagittal plane gait kinematics to weight-supported treadmill training and functional neuromuscular stimulation following stroke. Journal of Rehabilitation Research and Development, 2004, 41, 807.	1.6	35
25	Recovery of post stroke proximal arm function, driven by complex neuroplastic bilateral brain activation patterns and predicted by baseline motor dysfunction severity. Frontiers in Human Neuroscience, 2015, 9, 394.	2.0	33
26	Feasibility of combining multi-channel functional neuromuscular stimulation with weight-supported treadmill training. Journal of the Neurological Sciences, 2004, 225, 105-115.	0.6	31
27	Interpreting Prefrontal Recruitment During Walking After Stroke: Influence of Individual Differences in Mobility and Cognitive Function. Frontiers in Human Neuroscience, 2019, 13, 194.	2.0	29
28	Electrically Induced Recovery of Gait Components for Older Patients with Chronic Stroke. American Journal of Physical Medicine and Rehabilitation, 2000, 79, 349-360.	1.4	28
29	Upper-Extremity Stroke Therapy Task Discrimination Using Motion Sensors and Electromyography. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2008, 16, 82-90.	4.9	23
30	Development of a combined, sequential real-time fMRI and fNIRS neurofeedback system to enhance motor learning after stroke. Journal of Neuroscience Methods, 2020, 341, 108719.	2.5	22
31	Static and dynamic postural stability in veterans with combat-related mild traumatic brain injury. Gait and Posture, 2015, 42, 550-557.	1.4	21
32	Capability of 2 Gait Measures for Detecting Response to Gait Training in Stroke Survivors: Gait Assessment and Intervention Tool and the Tinetti Gait Scale. Archives of Physical Medicine and Rehabilitation, 2012, 93, 129-136.	0.9	20
33	Feasibility of gait training for acute stroke patients using FNS with implanted electrodes. Journal of the Neurological Sciences, 2000, 179, 103-107.	0.6	17
34	Response of prolonged flaccid paralysis to FNS rehabilitation techniques. Disability and Rehabilitation, 2000, 22, 565-573.	1.8	14
35	Functional Brain Correlates of Upper Limb Spasticity and Its Mitigation following Rehabilitation in Chronic Stroke Survivors. Stroke Research and Treatment, 2014, 2014, 1-8.	0.8	14
36	A Detection Scheme for Frontalis and Temporalis Muscle EMG Contamination of EEG Data., 2006, 2006, 4514-8.		12

#	Article	IF	Citations
37	Abnormal Leg Muscle Latencies and Relationship to Dyscoordination and Walking Disability after Stroke. Rehabilitation Research and Practice, 2011, 2011, 1-8.	0.6	12
38	Enhanced life-role participation in response to comprehensive gait training in chronic-stroke survivors. Disability and Rehabilitation, 2012, 34, 1535-1539.	1.8	12
39	Greater Cortical Thickness Is Associated With Enhanced Sensory Function After Arm Rehabilitation in Chronic Stroke. Neurorehabilitation and Neural Repair, 2018, 32, 590-601.	2.9	12
40	Combined real-time fMRI and real time fNIRS brain computer interface (BCI): Training of volitional wrist extension after stroke, a case series pilot study. PLoS ONE, 2021, 16, e0250431.	2.5	12
41	fMRI methods for proximal upper limb joint motor testing and identification of undesired mirror movement after stroke. Journal of Neuroscience Methods, 2008, 175, 133-142.	2.5	11
42	Enhanced life-role participation in response to comprehensive gait training in chronic stroke survivors [*] . Disability and Rehabilitation, 2012, 34, 2264-2271.	1.8	11
43	Mobility Function and Recovery After Stroke: Preliminary Insights From Sympathetic Nervous System Activity. Journal of Neurologic Physical Therapy, 2018, 42, 224-232.	1.4	11
44	Innovative Long-Dose Neurorehabilitation for Balance and Mobility in Chronic Stroke: A Preliminary Case Series. Brain Sciences, 2020, 10, 555.	2.3	11
45	Response of gait deficits to neuromuscular electrical stimulation for stroke survivors. Expert Review of Neurotherapeutics, 2006, 6, 1511-1522.	2.8	8
46	Guest Editorial: Gait coordination protocol for recovery of coordinated gait, function, and quality of life following stroke. Journal of Rehabilitation Research and Development, 2012, 49, xix.	1.6	8
47	A generalized regression model for region of interest analysis of fMRI data. Neurolmage, 2012, 59, 502-510.	4.2	8
48	Hemispheric Activation during Planning and Execution Phases in Reaching post Stroke. Medicine (United States), 2015, 94, e307.	1.0	8
49	Reliability and Minimal Detectable Change in the Gait Assessment and Intervention Tool in Patients With Multiple Sclerosis. PM and R, 2020, 12, 685-691.	1.6	8
50	Spanish Crossâ€cultural Adaptation of the Gait Assessment and Intervention Tool. PM and R, 2019, 11, 954-962.	1.6	7
51	Common Data Elements for Unruptured Intracranial Aneurysm and Subarachnoid Hemorrhage Clinical Research: Recommendations from the Working Group on Long-Term Therapies. Neurocritical Care, 2019, 30, 79-86.	2.4	6
52	Necessity and Content of Swing Phase Gait Coordination Training Post Stroke; A Case Report. Brain Sciences, 2021, 11, 1498.	2.3	6
53	Stance Phase Gait Training Post Stroke Using Simultaneous Transcranial Direct Current Stimulation and Motor Learning-Based Virtual Reality-Assisted Therapy: Protocol Development and Initial Testing. Brain Sciences, 2022, 12, 701.	2.3	6
54	Addressing low frequency movement artifacts in EEG signal recorded during center-out reaching tasks., 2014, 2014, 6497-500.		4

#	Article	IF	CITATIONS
55	Brain control of functional reach in healthy adults and stroke survivors. Restorative Neurology and Neuroscience, 2014, 32, 559-573.	0.7	4
56	Construct Validity of the Gait Assessment and Intervention Tool ($\langle scp \rangle GAIT \langle scp \rangle$) in People With Multiple Sclerosis. PM and R, 2021, 13, 307-313.	1.6	4
57	BCI Therapeutic Applications for Improving Brain Function. , 2012, , 352-362.		4
58	A Detection Scheme for Frontalis and Temporalis Muscle EMG Contamination of EEG Data. Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2006, , .	0.5	2
59	Trajectories of stroke recovery of impairment, function, and quality of life in response to 12-month mobility and fitness intervention. NeuroRehabilitation, 2021, , 1-12.	1.3	2
60	Four methods of brain pattern analyses of fMRI signals associated with wrist extension versus wrist flexion studied for potential use in future motor learning BCI. PLoS ONE, 2021, 16, e0254338.	2.5	1
61	Abstract 73: Improvement of Arm Function Following Intensive Rehabilitation in Chronic Stroke Correlates With Increase in Fractional Anisotropy in Major White Matter Tracts. Stroke, 2016, 47, .	2.0	0
62	The FNS project. Rehab Management, 2003, 16, 32-5, 58.	0.0	0