
Pedro Company

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/669526/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	CAD training for digital product quality: a formative approach with computer-based adaptable resources for self-assessment. International Journal of Technology and Design Education, 2022, 32, 1393-1411.	2.6	3
2	Extracting datums to reconstruct CSG models from 2D engineering sketches of polyhedral shapes. Computers and Graphics, 2022, 102, 349-359.	2.5	2
3	Identifying Deception as a Critical Component of Visualization Literacy. IEEE Computer Graphics and Applications, 2022, 42, 116-122.	1.2	5
4	Sketch-Based Modeling in Mechanical Engineering Design: Current Status and Opportunities. CAD Computer Aided Design, 2022, 150, 103283.	2.7	5
5	A constraint redundancy elimination strategy to improve design reuse in parametric modeling. Computers in Industry, 2021, 129, 103460.	9.9	1
6	The Cost of Change in Parametric Modeling: A Roadmap. Computer-Aided Design and Applications, 2020, 18, 634-643.	0.6	10
7	On the effects of the fix geometric constraint in 2D profiles on the reusability of parametric 3D CAD models. International Journal of Technology and Design Education, 2019, 29, 821-841.	2.6	7
8	Teachers as designers of formative e-rubrics: a case study on the introduction and validation of go/no-go criteria. Universal Access in the Information Society, 2019, 18, 675-688.	3.0	5
9	Algorithmic Perception of Vertices in Sketched Drawings of Polyhedral Shapes. ACM Transactions on Applied Perception, 2019, 16, 1-19.	1.9	3
10	Detection of Vertices in Sketched Drawings of Polyhedral Shapes. Lecture Notes in Computer Science, 2019, , 376-383.	1.3	2
11	On the Role of Geometric Constraints to Support Design Intent Communication and Model Reusability. Computer-Aided Design and Applications, 2019, 17, 61-76.	0.6	6
12	A Database Framework for the Characterization and Classification of Parametric Models Based on Complexity Metrics to Support Data Analytics. , 2019, , .		1
13	Revisiting the design intent concept in the context of mechanical CAD education. Computer-Aided Design and Applications, 2018, 15, 47-60.	0.6	23
14	A Study on Sampling Strategies to Determine the Variability of Parametric History-Based 3D CAD Models. , 2018, , .		1
15	Identifying High-Value CAD Models: An Exploratory Study on Dimensional Variability As Complexity Indicator. , 2018, , .		4
16	Supporting connectivism in knowledge based engineering with graph theory, filtering techniques and model quality assurance. Advanced Engineering Informatics, 2018, 38, 252-263.	8.0	22
17	Assessment of Parametric Assembly Models Based on CAD Quality Dimensions. Computer-Aided Design and Applications, 2018, 16, 628-653.	0.6	3
18	NEW FEATURES FOR PROVIDING E-RUBRICS WITH ADAPTABLE PROPERTIES. , 2018, , .		0

PEDRO COMPANY

#	Article	IF	CITATIONS
19	On the Application of Model-Based Definition Strategies to the Delivery of Technical Training. , 2017, , .		1
20	On the integration of model-based feature information in Product Lifecycle Management systems. International Journal of Information Management, 2017, 37, 611-621.	17.5	22
21	A survey on 3D CAD model quality assurance and testing tools. CAD Computer Aided Design, 2017, 83, 64-79.	2.7	51
22	Detecting mirror symmetry in single-view wireframe sketches of polyhedral shapes. Computers and Graphics, 2016, 59, 1-12.	2.5	5
23	Parametric CAD modeling: An analysis of strategies for design reusability. CAD Computer Aided Design, 2016, 74, 18-31.	2.7	102
24	A fast approach for perceptually-based fitting strokes into elliptical arcs. Visual Computer, 2015, 31, 775-785.	3.5	8
25	Approach for developing coordinated rubrics to convey quality criteria in MCAD training. CAD Computer Aided Design, 2015, 63, 101-117.	2.7	35
26	Explicit Communication of Geometric Design Intent in CAD: Evaluating Annotated Models in the Context of Reusability. , 2014, , .		1
27	Extended 3D annotations as a new mechanism to explicitly communicate geometric design intent and increase CAD model reusability. CAD Computer Aided Design, 2014, 57, 61-73.	2.7	54
28	An Algorithm for Grouping Lines Which Converge to Vanishing Points in Perspective Sketches of Polyhedra. Lecture Notes in Computer Science, 2014, , 77-95.	1.3	3
29	From sketches to CAM models. , 2013, , .		3
30	Perception of products by progressive multisensory integration. A study on hammers. Applied Ergonomics, 2011, 42, 652-664.	3.1	23
31	A new algorithm for finding faces in wireframes. CAD Computer Aided Design, 2010, 42, 279-309.	2.7	24
32	Human Perception in Segmentation of Sketches. Lecture Notes in Computer Science, 2010, , 106-117.	1.3	0
33	A Method for Reconstructing Sketched Polyhedral Shapes with Rounds and Fillets. Lecture Notes in Computer Science, 2010, , 152-155.	1.3	3
34	Computer-aided sketching as a tool to promote innovation in the new product development process. Computers in Industry, 2009, 60, 592-603.	9.9	44
35	Ceramic tile design: A case study of collaborative New-Product Development in fashion-driven chains. , 2009, , .		2
36	An Agent-Based Paradigm for Free-Hand Sketch Recognition. Lecture Notes in Computer Science, 2009, , 345-354.	1.3	2

PEDRO COMPANY

#	Article	IF	CITATIONS
37	Activity modelling in a collaborative ceramic tile design chain: an enhanced IDEF0 approach. Research in Engineering Design - Theory, Applications, and Concurrent Engineering, 2008, 19, 1-20.	2.1	17
38	ParSketch: A Sketch-Based Interface for a 2D Parametric Geometry Editor. , 2007, , 115-124.		9
39	Use of Patterns for Knowledge Management in the Ceramic Tile Design Chain. Lecture Notes in Computer Science, 2006, , 65-74.	1.3	3
40	Semantic Differential applied to the evaluation of machine tool design. International Journal of Industrial Ergonomics, 2005, 35, 1021-1029.	2.6	68
41	A survey on geometrical reconstruction as a core technology to sketch-based modeling. Computers and Graphics, 2005, 29, 892-904.	2.5	63
42	Improving Visualization Skills in Engineering Education. IEEE Computer Graphics and Applications, 2005, 25, 24-31.	1.2	74
43	An optimisation-based reconstruction engine for 3D modelling by sketching. Computers and Graphics, 2004, 28, 955-979.	2.5	58
44	Integrated modeling with top-down approach in subsidiary industries. Computers in Industry, 2004, 53, 97-116.	9.9	26
45	Educational software for teaching drawing-based conceptual design skills. Computer Applications in Engineering Education, 2004, 12, 257-268.	3.4	11
46	Skewed Mirror Symmetry for Depth Estimation in 3D Line-Drawings. Lecture Notes in Computer Science, 2004, , 142-153.	1.3	10
47	Smart Sketch System for 3D Reconstruction Based Modeling. Lecture Notes in Computer Science, 2003, , 58-68.	1.3	5
48	Product data quality and collaborative engineering. IEEE Computer Graphics and Applications, 2002, 22, 32-42.	1.2	40
49	DISSENY: An Integrated System for the Structures and Structural Elements Optimal Design. , 0, , .		1