Raúl GarcÃ-a-Valdés

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/669525/publications.pdf

Version: 2024-02-01

23 papers

1,099 citations

623734 14 h-index 794594 19 g-index

24 all docs

24 docs citations

times ranked

24

2259 citing authors

#	Article	IF	Citations
1	Disentangling the relative importance of climate, size and competition on tree growth in Iberian forests: implications for forest management under global change. Global Change Biology, 2011, 17, 2400-2414.	9.5	244
2	Environmental filters reduce the effects of sampling bias and improve predictions of ecological niche models. Ecography, 2014, 37, 1084-1091.	4.5	237
3	Long-term response of forest productivity to climate change is mostly driven by change in tree species composition. Scientific Reports, 2018, 8, 5627.	3.3	133
4	Chasing a moving target: projecting climate changeâ€induced shifts in nonâ€equilibrial tree species distributions. Journal of Ecology, 2013, 101, 441-453.	4.0	96
5	Evaluating the combined effects of climate and landâ€use change on tree species distributions. Journal of Applied Ecology, 2015, 52, 902-912.	4.0	73
6	Inferring shifts in tree species distribution using asymmetric distribution curves: a case study in the Iberian mountains. Journal of Vegetation Science, 2014, 25, 147-159.	2.2	45
7	Phenotypic correlates of potential range size and range filling in European trees. Perspectives in Plant Ecology, Evolution and Systematics, 2014, 16, 219-227.	2.7	39
8	Phylogeny and the prediction of tree functional diversity across novel continental settings. Global Ecology and Biogeography, 2017, 26, 553-562.	5.8	31
9	Climate change impacts on longâ€ŧerm forest productivity might be driven by species turnover rather than by changes in tree growth. Global Ecology and Biogeography, 2020, 29, 1360-1372.	5.8	31
10	Temporal changes in Mediterranean forest ecosystem services are driven by stand development, rather than by climate-related disturbances. Forest Ecology and Management, 2021, 480, 118623.	3.2	29
11	Low forest productivity associated with increasing droughtâ€tolerant species is compensated by an increase in droughtâ€tolerance richness. Global Change Biology, 2021, 27, 2113-2127.	9.5	24
12	Climate changeâ€driven extinctions of tree species affect forest functioning more than random extinctions. Diversity and Distributions, 2018, 24, 906-918.	4.1	23
13	Effects of climate, species interactions, and dispersal on decadal colonization and extinction rates of Iberian tree species. Ecological Modelling, 2015, 309-310, 118-127.	2.5	21
14	Distribution and conservation of species is misestimated if biotic interactions are ignored: the case of the orchid Laelia speciosa. Scientific Reports, 2020, 10, 9542.	3.3	18
15	Macroecology and ecoinformatics: Evaluating the accuracy of the ecological niche models calibrated with species occurrence data with biases and/or errors. Ecosistemas, 2014, 23, 46-53.	0.4	13
16	Disentangling biology from mathematical necessity in twentieth-century gymnosperm resilience trends. Nature Ecology and Evolution, 2021, 5, 733-735.	7.8	10
17	Reverse latitudinal diversity gradients, exceptions that prove the rule?. Ecosistemas, 2014, 23, 4-12.	0.4	9
18	Nationwide climate-sensitive models for stand dynamics and forest scenario simulation. Forest Ecology and Management, 2022, 505, 119909.	3.2	9

#	Article	IF	CITATIONS
19	Inventarios forestales para el estudio de patrones y procesos en EcologÃa. , 2016, 25, 1-5.		6
20	Aplicaciones de modelos ecol \tilde{A}^3 gicos a la gesti \tilde{A}^3 n de recursos naturales. , 2013, , .		4
21	Theoretical axial wall angulation for rotational resistance form in an experimental-fixed partial denture. Journal of Advanced Prosthodontics, 2017, 9, 278.	2.6	2
22	Effects of climate change on forest ecosystems: integrating inventories and models., 2016, 25, 51-59.		2
23	Aplicación de modelos ecológicos para el análisis de la estructura y dinámica de los bosques ibéricos en respuesta al cambio climático. , 2013, , 77-107.		0