Yosuke Taniguchi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6695202/publications.pdf

Version: 2024-02-01

52	716	17 h-index	25
papers	citations		g-index
55	55	55	389
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Selective Formation of Stable Triplexes Including a TA or a CG Interrupting Site with New Bicyclic Nucleoside Analogues (WNA). Journal of the American Chemical Society, 2004, 126, 516-528.	13.7	60
2	Adenosine-1,3-diazaphenoxazine Derivative for Selective Base Pair Formation with 8-Oxo-2′-deoxyguanosine in DNA. Journal of the American Chemical Society, 2011, 133, 7272-7275.	13.7	49
3	Surprising Repair Activities of Nonpolar Analogs of 8-oxoG Expose Features of Recognition and Catalysis by Base Excision Repair Glycosylases. Journal of the American Chemical Society, 2012, 134, 1653-1661.	13.7	38
4	Effects of Halogenated WNA Derivatives on Sequence Dependency for Expansion of Recognition Sequences in Non-Natural-Type Triplexes. Journal of Organic Chemistry, 2006, 71, 2115-2122.	3.2	36
5	An efficient antigene activity and antiproliferative effect by targeting the Bcl-2 or survivin gene with triplex forming oligonucleotides containing a W-shaped nucleoside analogue (WNA-Î ² T). Organic and Biomolecular Chemistry, 2012, 10, 8336.	2.8	32
6	Selective fluorescence quenching of the 8-oxoG-clamp by 8-oxodeoxyguanosine in ODN. Bioorganic and Medicinal Chemistry Letters, 2009, 19, 727-730.	2.2	29
7	Nonpolar Isosteres of Damaged DNA Bases:Â Effective Mimicry of Mutagenic Properties of 8-Oxopurines. Journal of the American Chemical Society, 2007, 129, 8836-8844.	13.7	27
8	Synthesis of new derivatives of 8-oxoG-Clamp for better understanding the recognition mode and improvement of selective affinity. Bioorganic and Medicinal Chemistry, 2010, 18, 3992-3998.	3.0	27
9	W-shape nucleic acid (WNA) for selective formation of non-natural anti-parallel triplex including a TA interrupting site. Tetrahedron Letters, 2001, 42, 6915-6918.	1.4	26
10	Aminopyridinyl–Pseudodeoxycytidine Derivatives Selectively Stabilize Antiparallel Triplex DNA with Multiple CG Inversion Sites. Angewandte Chemie - International Edition, 2016, 55, 12445-12449.	13.8	26
11	Discrimination Between 8â€Oxoâ€2â€2â€Deoxyguanosine and 2â€2â€Deoxyguanosine in DNA by the Single Nuc Primer Extension Reaction with Adap Triphosphate. Angewandte Chemie - International Edition, 2015, 54, 5147-5151.	icleotide 13.8	24
12	N-(Guanidinoethyl)- $2\hat{a}\in^2$ -deoxy-5-methylisocytidine exhibits selective recognition of a CG interrupting site for the formation of anti-parallel triplexes. Organic and Biomolecular Chemistry, 2013, 11, 3918.	2.8	22
13	OFF-to-ON type fluorescent probe for the detection of 8-oxo-dG in DNA by the Adap-masked ODN probe. Bioorganic and Medicinal Chemistry Letters, 2012, 22, 543-546.	2.2	20
14	Development of novel C-nucleoside analogues for the formation of antiparallel-type triplex DNA with duplex DNA that includes TA and dUA base pairs. Organic and Biomolecular Chemistry, 2020, 18, 2845-2851.	2.8	19
15	The Spermine–Bisaryl Conjugate as a Potent Inducer of B―to Zâ€DNA Transition. Chemistry - A European Journal, 2010, 16, 11993-11999.	3.3	18
16	Synthesis of p-amino-WNA derivatives to enhance the stability of the anti-parallel triplex. Tetrahedron, 2008, 64, 7164-7170.	1.9	17
17	Recognition of CG interrupting site by W-shaped nucleoside analogs (WNA) having the pyrazole ring in an anti-parallel triplex DNA. Bioorganic and Medicinal Chemistry, 2009, 17, 6803-6810.	3.0	17
18	Modification of the aminopyridine unit of 2′-deoxyaminopyridinyl-pseudocytidine allowing triplex formation at CG interruptions in homopurine sequences. Nucleic Acids Research, 2018, 46, 8679-8688.	14.5	17

#	Article	IF	Citations
19	An Isocytidine Derivative with a 2â€Aminoâ€6â€methylpyridine Unit for Selective Recognition of the CG Interrupting Site in an Antiparallel Triplex DNA. ChemBioChem, 2014, 15, 2374-2378.	2.6	16
20	Synchronized Chiral Induction between [5]Helicene–Spermine Ligand and <i>B</i> – <i>Z</i> DNA Transition. Chemistry - A European Journal, 2017, 23, 1763-1769.	3.3	16
21	2,6-Diaminopurine nucleoside derivative of 9-ethyloxy-2-oxo-1,3-diazaphenoxazine (2-amino-Adap) for recognition of 8-oxo-dG in DNA. Bioorganic and Medicinal Chemistry, 2014, 22, 1634-1641.	3.0	14
22	EXPANSION OF TRIPLEX RECOGNITION CODES BY THE USE OF NOVEL BICYCLIC NUCLEOSIDE DERIVATIVES (WNA). Nucleosides, Nucleotides and Nucleic Acids, 2005, 24, 823-827.	1.1	12
23	Synthesis of the Oligoribonucleotides Incorporating 8-Oxo-Guanosine and Evaluation of their Base Pairing Properties. Nucleosides, Nucleotides and Nucleic Acids, 2013, 32, 124-136.	1.1	12
24	Effects of 8-halo-7-deaza-2′-deoxyguanosine triphosphate on DNA synthesis by DNA polymerases and cell proliferation. Bioorganic and Medicinal Chemistry, 2016, 24, 3856-3861.	3.0	10
25	Effect of the 3-halo substitution of the $2\hat{a}\in^2$ -deoxy aminopyridinyl-pseudocytidine derivatives on the selectivity and stability of antiparallel triplex DNA with a CG inversion site. Bioorganic and Medicinal Chemistry, 2017, 25, 3853-3860.	3.0	9
26	Oxidative-stress-driven mutagenesis in the small intestine of the gpt delta mouse induced by oral administration of potassium bromate. Mutation Research - Genetic Toxicology and Environmental Mutagenesis, 2020, 850-851, 503136.	1.7	8
27	Efficient DNA Strand Displacement by a Wâ€Shaped Nucleoside Analogue (WNAâ€Î²T) Containing an <i>ortho</i> å€Methylâ€Substituted Phenyl Ring. ChemBioChem, 2012, 13, 1152-1160.	2.6	7
28	Synthesis of $1\hat{a}\in^2$ -phenyl- $2\hat{a}\in^2$ -OMe ribose analogues connecting the thymine base at the $1\hat{a}\in^2$ position through a flexible linker for the formation of a stable anti-parallel triplex DNA. Tetrahedron, 2013, 69, 600-606.	a 1.9	7
29	Synthesis of 8-halogenated-7-deaza-2′-deoxyguanosine as an 8-oxo-2′-deoxyguanosine analogue and evaluation of its base pairing properties. Tetrahedron, 2014, 70, 2040-2047.	1.9	7
30	Recognition and Excision Properties of 8â€Halogenatedâ€7â€Deazaâ€2â€2â€Deoxyguanosine as 8â€Oxoâ€2â€2â€Deoxyguanosine Analogues and Fpg and hOGG1 Inhibitors. ChemBioChem, 2015, 16, 1190-119	98 ^{2.6}	7
31	Inhibitory Effect of 8â€Halogenated 7â€Deazaâ€2â€2â€deoxyguanosine Triphosphates on Human 8â€Oxoâ€2â€deoxyguanosine Triphosphatase, hMTH1, Activities. ChemBioChem, 2016, 17, 566-569.	2.6	7
32	Aminopyridinyl–Pseudodeoxycytidine Derivatives Selectively Stabilize Antiparallel Triplex DNA with Multiple CG Inversion Sites. Angewandte Chemie, 2016, 128, 12633-12637.	2.0	6
33	Enhancement of TFO Triplex Formation by Conjugation with Pyrene <i>via</i> Click Chemistry. Chemical and Pharmaceutical Bulletin, 2015, 63, 920-926.	1.3	5
34	Synthesis of C-nucleoside analogues based on the pyrimidine skeleton for the formation of anti-parallel-type triplex DNA with a CG mismatch site. Bioorganic and Medicinal Chemistry, 2020, 28, 115782.	3.0	5
35	Enhancements in the utilization of antigene oligonucleotides in the nucleus by booster oligonucleotides. Chemical Communications, 2020, 56, 9731-9734.	4.1	5
36	Design and synthesis of purine nucleoside analogues for the formation of stable anti-parallel-type triplex DNA with duplex DNA bearing the ^{5m} CG base pair. RSC Advances, 2021, 11, 21390-21396.	3.6	5

#	Article	IF	CITATIONS
37	Recognition and detection of 8-oxo-rG in RNA using the DNA/OMeRNA chimera probes containing fluorescent adenosine-diazaphenoxazine analog. Bioorganic and Medicinal Chemistry, 2016, 24, 1308-1313.		4
38	Stable and Selective Antiparallel Type Triplex DNA Formation by Targeting a GC Base Pair with the TFO Containing One &Iti>N&It/i>&Itsup>2&It/sup>-Phenyl-2′-deoxyguanosine. Chemical and Pharmaceutical Bulletin, 2018, 66, 624-631.		4
39	Synthesis of 8â€Oxoguanosine Phosphoramidite and Its Incorporation into Oligoribonucleotides. Current Protocols in Nucleic Acid Chemistry, 2014, 56, 4.58.1-10.	0.5	2
40	Synthesis of the deuterated thymidine-d and deuterated oligonucleotides. Tetrahedron Letters, 2019, 60, 151037.	1.4	2
41	Synthesis of γ-N-modified 8-oxo-2'-deoxyguanosine triphosphate and its characterization. Nucleosides, Nucleotides and Nucleic Acids, 2019, 38, 578-589.	1.1	2
42	Effects of the 2-Substituted Adenosine-1,3-diazaphenoxazine 5′-Triphosphate Derivatives on the Single Nucleotide Primer Extension Reaction by DNA Polymerase. Chemical and Pharmaceutical Bulletin, 2019, 67, 1123-1130.	1.3	2
43	Development of MTH1-Binding Nucleotide Analogs Based on 7,8-Dihalogenated 7-Deaza-dG Derivatives. International Journal of Molecular Sciences, 2021, 22, 1274.	4.1	2
44	Implications of N7-hydrogen and C8-keto on the base pairing, mutagenic potential and repair of 8-oxo-2′-deoxy-adenosine: Investigation by nucleotide analogues. Bioorganic Chemistry, 2022, 127, 106029.	4.1	2
45	Syntheses and properties of low-polarity shape mimics of 8oxopurines. Nucleic Acids Symposium Series, 2007, 51, 217-218.	0.3	1
46	Synthesis of 2′â€deoxyâ€4â€aminopyridinylpseudocytidine Derivatives for Incorporation Into Triplex Forming Oligonucleotides. Current Protocols in Nucleic Acid Chemistry, 2019, 77, e80.	0.5	1
47	Development of Triplex Forming Oligonucleotide Including Artificial Nucleoside Analogues for the Antigene Strategy., 2018,, 253-269.		1
48	Detection and structural analysis of pyrimidine-derived radicals generated on DNA using a profluorescent nitroxide probe. Chemical Communications, 2021, 58, 56-59.	4.1	1
49	Multiple-turnover Single Nucleotide Primer Extension Reactions to Detect of 8-Oxo-2'-Deoxyguanosine in DNA. Chemical Communications, 2022, , .	4.1	1
50	Specific Recognition of Single Nucleotide by Alkylating Oligonucleotides and Sensing of 8-Oxoguanine. Nucleic Acids and Molecular Biology, 2016, , 221-248.	0.2	0
51	Chemistry of Artificial Nucleic Acid and Oligonucleotide Therapeutics Based on Natural Nucleic Acids. Yuki Gosei Kagaku Kyokaishi/Journal of Synthetic Organic Chemistry, 2018, 76, 482-485.	0.1	O
52	Development of Artificial Nucleoside Analogues for the Recognition and Detection of Damaged Nucleoside in DNA. Yuki Gosei Kagaku Kyokaishi/Journal of Synthetic Organic Chemistry, 2022, 80, 46-54.	0.1	0